

Edgar Sarmiento Calisaya

Analysis of Natural Language Scenarios

TESE DE DOUTORADO

Thesis presented to the Programa de Pós-graduação
em Informática, of the Departamento de Informática
do Centro Técnico Científico da PUC-Rio, as partial
fulfillment of the requirements for the degree of
Doutor.

Advisor: Prof. Julio Cesar Sampaio do Prado Leite

Rio de Janeiro

April 2016

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

Edgar Sarmiento Calisaya

Analysis of Natural Language Scenarios
Thesis presented to the Programa de Pós-Graduação em
Informática, of the Departamento de Informática do Centro
Técnico Científico da PUC-Rio, as partial fulfillment of the
requirements for the degree of Doutor.

Prof. Julio Cesar Sampaio do Prado Leite
Advisor

Departamento de Informática – PUC-Rio

Prof. Arndt von Staa
Departamento de Informática – PUC-Rio

Prof. Carlos José Pereira de Lucena
 Departamento de Informática – PUC-Rio

Prof. Marcos Roberto da Silva Borges
 UFRJ

Prof. Eduardo Kinder Almentero
UFRRJ

Prof. Vera Maria B. Werneck
UERJ

Prof. Márcio da Silveira Carvalho
Coordinator of the Centro Técnico Científico da PUC-Rio

Rio de Janeiro, April 13th, 2016.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

CDD: 004

All rights reserved

Edgar Sarmiento Calisaya

Graduated in Systems Engineering (Computer Science) from
Universidad Nacional de San Agustin – Arequipa – Perú. He obtained
the degree of Master in Informatics at Universidade federal do Rio de
Janeiro – Rio de janeiro – Brazil. He has been working in the field of
Software Engineering for over fifteen years.

Ficha Catalográfica

Sarmiento Calisaya, Edgar

 Analysis of Natural Language Scenarios / Edgar Sarmiento

Calisaya ; advisor: Julio Cesar Sampaio do Prado Leite. – 2016.

 231 f. : il. ; 30 cm

 Tese (doutorado)–Pontifícia Universidade Católica do Rio de

Janeiro, Departamento de Informática, 2016.

 Inclui bibliografia

 1. Informática – Teses. 2. Requisitos de software. 3. Cenários.

4. Petri-Net. 5. Análise de requisitos. 6. Verificação de requisitos. I.

Leite, Julio Cesar Sampaio do Prado. II. Pontifícia Universidade

Católica do Rio de Janeiro. Departamento de Informática. III.

Título.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

To my parents, Antonia Calisaya Sarmiento and Fabio Estanislao Sarmiento
Choque.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

Acknowledgements

First of all, I would like to give my most sincere tribute and gratitude to my

advisor Julio Cesar Sampaio do Prado Leite who believed in this work. Their

academic vision and timely discussions always inspire me. For his friendship,

guidance, encouragement and insights, which guide me through my Ph.D life.

Futhermore, I would like to thank my parents Antonia and Fabio Estanislao for

education and caring, for giving me all the necessary support, so that I could come

here and be able to do this Ph.D study.

I would like to thank my brothers Lourdes, Juan Estanislao and Alberto for their

companionship, love and patience in listening to me every time I needed.

I would like to thank to the professors Vera Maria B. Werneck, Arndt von Staa,

Noemi Rodrigues and Marcos Roberto da Silva Borges for their important

contributions; and who participated in the examination Committee.

To my mates Roxana, Giovana, Elizabeth, Joanna, Priscilla, Marilia, Andre,

Eduardo and Henrique of Requirements Engineering research group at PUC-Rio,

for the inspiration, knowledge, contributions, fellowship and time spend on the

problem presented in this thesis.

Additionally, I am grateful to my friends Guina, Ruben Rafael, Giovana, Roxana,

Fernanda and Gilbert, who were always very helpful and supportive.

I am also thankful to professors at PUC-Rio for everything I learned from them.

In adittion, I would like to thank to CAPES funding agency and the PUC-Rio, for

the financial support.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

Abstract
Sarmiento Calisaya, Edgar; Leite, Julio Cesar Sampaio do Prado. Analysis
of Natural Language Scenarios. Rio de Janeiro, 2016, 231p. DSc Thesis -
Departamento de informática, Pontifícia Universidade Católica do Rio de
Janeiro.

Requirements analysis plays a key role in the software development process.

Natural language-based scenario representations are often used for writing

software requirements specifications (SRS). Scenarios written using natural

language may be ambiguous, and, sometimes, inaccurate. This problem is

partially due to the fact that relationships among scenarios are rarely represented

explicitly. As scenarios are used as input to subsequent activities of the software

development process (SD), it is very important to enable their analysis; especially

to detect defects due to wrong information or missing information. This work

proposes a Petri-Net and Natural Language Processing (NLP) based approach as

an effective way to analyze the acquired scenarios, which takes textual description

of scenarios (conform to a metamodel defined in this work) as input and generates

an analysis report as output. To enable the automated analysis, scenarios are

translated into equivalent Place/Transition Petri-Nets. Scenarios and their

resulting Petri-Nets can be automatically analyzed to evaluate some properties

related to unambiguity, completeness, consistency and correctness. The identified

defects can be traced back to the scenarios, allowing their revision. We also

discuss how unambiguity, completeness, consistency and correctness of scenario-

based SRSs can be decomposed in related properties, and define heuristics for

searching defect indicators that hurt these properties. We evaluate our work by

applying our analysis approach to four case studies. The evaluation compares the

results achieved by our tool-supported approach, with an inspection based

approach and with related work.

Keywords
Software requirements; scenarios; use cases; requirements analysis;

requirements verification; Petri-Net; Natural Language Processing.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

Resumo
Sarmiento Calisaya, Edgar; Leite, Julio Cesar Sampaio do Prado. Análise
de Cenários em Linguagem Natural. Rio de Janeiro, 2016, 231p. Tese de
Doutorado - Departamento de informática, Pontifícia Universidade Católica
do Rio de Janeiro.

A análise de requisitos desempenha um papel fundamental no processo de

desenvolvimento de software. Neste sentido, representações de cenários baseados

em linguagem natural são muitas vezes utilizados para descrever especificações

de requisitos de software (SRS). Cenários descritos usando linguagem natural

podem ser ambíguos e, às vezes, imprecisos. Este problema é parcialmente devido

ao fato de que os relacionamentos entre os cenários são raramente representados

explicitamente. Como os cenários são utilizados como entrada para as actividades

subsequentes do processo de desenvolvimento de software (SD), é muito

importante facilitar a sua análise; especialmente para detectar defeitos devido a

informações erradas ou falta de informação. Este trabalho propõe uma abordagem

baseada em Redes de Petri e técnicas de Processamento de Linguagem Natural

como uma forma eficaz para analisar os cenários adquiridos, e que toma

descrições textuais de cenários (em conformidade com um metamodelo definido

neste trabalho) como entrada e gera um relatório de análise como saída. Para

facilitar a análise automática, os cenários são transformados em Redes de Petri

(Lugar/Transição) equivalentes. Os cenários e suas Redes de Petri resultantes

podem ser analisados automaticamente para avaliar algumas propriedades

relacionadas à desambiguidade, completeza, consistência e corretude. Os defeitos

identificados podem ser rastreados até os cenários, permitindo a sua revisão. Nós

também discutimos como desambiguidade, completeza, consistência e corretude

das SRSs baseadas em cenários podem ser decompostas em propriedades

relacionadas, e definimos heurísticas para encontrar indicadores de defeitos que

prejudicam estas propriedades. Avaliamos nosso trabalho, aplicando a nossa

abordagem de análise em quatro estudos de caso. Essa avaliação compara os

resultados obtidos pela nossa abordagem automatizada contra os resultados

obtidos por um processo de inspeção e com trabalhos relacionados.

Palavras-chave
Requisitos de software; cenários; casos de uso; análise de requisitos;

verificação de requisitos; Petri-Net; Processamento de Linguagem Natural.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

Contents

1 Introduction 21

1.1. Motivation 23

1.2. Problem 24

1.3. Objective 26

1.4. Thesis 26

1.5. Proposed Solution 26

1.5.1. Approach Overview 27

1.5.2. Expected Contribution 28

1.5.3. Evaluation 29

1.6. Outline 30

2 Theoretical Background 31

2.1. Requirements Engineering 31

2.1.1. Requirements 32

2.1.2. Requirements Specification 33

2.1.3. Scenario-Based Requirements Specification 34

2.1.3.1. Scenarios 34

2.1.3.2. Representing Scenarios 35

2.1.3.3. Use Case Representation 36

2.1.3.4. Scenario Representation 37

2.1.4. Natural Language-based Scenario Representations

Compared 38

2.2. Quality in Software Requirements Specification 39

2.2.1. Non-functional Requirements (NFR) 40

2.2.1.1. NFR Framework 40

2.2.2. Quality Assurance for Software Requirements 41

2.2.2.1. Software Requirements Quality Characteristics 42

2.2.2.2. Verification & Validation 43

2.2.2.3. Quality of Scenarios 44

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

2.3. Concurrency 45

2.3.1. Synchronization 46

2.3.2. Non-determinism 46

2.3.3. Synchronization Constraints 47

2.3.4. Desired Properties of Concurrent Systems 47

2.3.4.1. Deadlock-free 47

2.3.4.2. Boundedness 47

2.3.5. Petri-Net 48

2.3.5.1. Petri-Net Definitions 48

2.3.5.2. Modeling with Petri-Nets 50

2.3.5.3. Analysis of Petri-Nets 51

2.4. Considerations about Scenarios and Concurrency 54

2.5. Related Work 54

2.5.1. Analysis of Software Requirements Specification 54

2.5.2. Overview of the State of the Art 55

2.5.2.1. Static Analysis of Software Requirements Specification 55

2.5.2.1.1. Static Analysis of Requirement Statements 56

2.5.2.1.2. Static Analysis of Scenarios 59

2.5.2.2. Dynamic Analysis of Software Requirements Specification 62

2.5.3. Analysis Approaches Compared 65

2.5.4. Research Gaps 69

3 A Quality Model for Scenarios 71

3.1. Quality in Scenario-based SRS 71

3.2. Modeling Correctness as Non-functional Requirements 72

3.2.1. Defining the Main NFRs 73

3.2.1.1. Unambiguity 74

3.2.1.2. Completeness 76

3.2.1.3. Consistency 80

3.2.1.4. Correctness 81

3.2.2. Modeling the SIG 81

3.3. Final Considerations 83

4 Scenario Analysis Approach 84

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

4.1. Writing Restricted-form of Natural Language Scenarios 85

4.1.1. Scenario 86

4.1.1.1. Title 87

4.1.1.2. Goal 87

4.1.1.3. Context 88

4.1.1.4. Resources 88

4.1.1.5. Actors 88

4.1.1.6. Episodes 88

4.1.1.7. Exception 90

4.1.1.8. Constraint 90

4.1.2. Restricted-form of Natural Language 91

4.1.3. Scenario Relationships-based Modularity 94

4.1.3.1. Sequential Relationships 95

4.1.3.2. Non-sequential Relationships 96

4.1.3.3. Heuristics to Find Non-explicit and Non-sequential

Relationships 97

4.1.4. Running Example 100

4.2. Pre-processing Scenarios 104

4.3. Deriving Petri-Nets 105

4.3.1. Transforming Scenarios into Petri-Nets 105

4.3.2. Integrating Petri-Nets 110

4.3.3. Petri-Net Example 112

4.3.4. Preservation of Properties 117

4.4. Analyzing Scenarios 118

4.4.1. Unambiguity Analysis 119

4.4.2. Completeness Analysis 121

4.4.2.1. Lexical Analysis 122

4.4.2.2. Syntactical Analysis 123

4.4.3. Consistency Analysis 125

4.4.3.1. Managing the State Explosion 125

4.4.4. Correctness Analysis 130

4.5. Generating Feedback 130

4.5.1. Traceability between Petri-Net and Scenario 132

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

4.6. Recommending Fixes for Defects 132

4.7. Final Considerations 135

4.7.1. Complexity Analysis 136

5 C&L (Cenários & Léxicos) 138

5.1. C&L 138

5.2. Extending C&L - Lua 139

5.2.1. Tools 140

5.2.2. Modules 141

5.3. Implementation Details 142

5.3.1. Syntax Parser Module 142

5.3.1.1. Construct Scenarios 143

5.3.1.2. Identify Root Scenario 144

5.3.1.3. Construct Integration Scenario 145

5.3.1.4. Operationalize Scenarios 145

5.3.2. Pre-processing Module 146

5.3.2.1. Construct Scenarios 146

5.3.2.2. Operationalize Scenarios 146

5.3.3. Petri-Net Generator Module 147

5.3.3.1. Construct Scenarios 148

5.3.3.2. Identify Root Scenario 149

5.3.3.3. Construct Integration Scenario 149

5.3.3.4. Operationalize Scenarios 149

5.3.4. Analysis Module 149

5.3.4.1. Construct Scenarios 149

5.3.4.2. Identify Root Scenario 150

5.3.4.3. Construct Integration Scenario 151

5.3.4.4. Operationalize Scenarios 151

5.3.4.4.1. String Finding 151

5.3.4.4.2. Regular Expression 152

5.3.4.4.3. Levenshtein’s distance (Levenshtein, 1966) 152

5.3.4.4.4. Phrase-structure Parsing 152

5.3.4.4.5. Syntactic Similarity Heuristic 156

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

5.3.4.4.6. Reachability Analysis: 159

5.3.5. Feedback Generator Module 160

5.3.5.1. Construct Scenarios 161

5.3.5.2. Operationalize Scenarios 161

5.4. Usage 162

5.4.1. C&L Main Menu 163

5.4.2. C&L Scenario and Lexicon Functionalities 164

5.4.3. C&L Analysis Functionality 165

5.4.4. C&L Petri-Net Visualizer Functionality 167

5.5. Final Considerations 168

6 Case Studies 169

6.1. Introduction 169

6.1.1. Hypothesis 169

6.1.2. Variables 170

6.1.3. Evaluation Metrics 170

6.1.4. Case Study Selection 171

6.1.5. Subjects 173

6.2. Referential Baseline Solution 174

6.2.1. Online Broker System (Somé, 2010) 174

6.2.2. ATM system (Cox et al., 2004) 175

6.2.3. DLibra and Mobile News 176

6.2.4. Summary of Baselines 177

6.3. Evaluation 178

6.3.1. Time Analysis 178

6.3.2. Analysis Results 179

6.3.2.1. Results of Unambiguity Analysis 180

6.3.2.2. Results of Completeness Analysis 181

6.3.2.3. Results of Consistency Analysis 182

6.3.2.4. Results of Correctness Analysis 184

6.4. Interpretation 184

6.4.1. Accuracy of the Petri-Net Generator 185

6.4.2. Considerations about Scalability 186

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

6.5. Threats to Validity 187

6.6. Conclusion 187

7 Conclusion 189

7.1. Comparison with Related Work 191

7.2. Contribution 193

7.3. Limitation 194

7.4. Future Work 195

References 196

Appendix A1 Referential Specification Used as Baseline 202

A1.1 The Online Broker System 203

A1.2 The ATM System 206

A1.3 DLibra CRM 210

A1.4 Mobile News 217

Appendix A2 Quality Models of Related Work 224

A.2.1. Static Analysis of Software Requirements Specification 224

A.2.1.1. Static Analysis of Requirement Statements 224

A.2.1.2. Static Analysis of Scenarios 226

A.2.2. Dynamic Analysis of Software Requirements Specification 230

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

List of Figures

Figure 1 – Overview of the Scenarios Analysis Approach. 28

Figure 2 - Requirement Engineering (Leite, 2007) 32

Figure 3 - SIG of Correctness. 41

Figure 4 – Producer and Consumer Problem Using Petri-Nets 45

Figure 5 – Reader and Writer Problem Using Petri-Nets 46

Figure 6 - Petri-Net metamodel (Sarmiento et al., 2015) 48

Figure 7 - Marked Petri-Net 49

Figure 8 - (a) Transitions before Firing, (b) Transitions after firing 50

Figure 9 - Sequential structure 50

Figure 10 - Non-deterministic structure 51

Figure 11 - Concurrency structure 51

Figure 12 - Synchronization structure 51

Figure 13 - (a) Transitions before Firing, (b) Transitions after firing 52

Figure 14 - A Reachable Petri-Net (generated using PIPE2, 2015) 53

Figure 15 – Initial SIG of SRS Correctness. 73

Figure 16 – SIG of SRS Correctness. 83

Figure 17– SADT of the Scenarios Analysis Approach. 85

Figure 18 - Scenario Conceptual Model. 87

Figure 19 – Example of scenario (Submit Order) in the Online Broker

System. 91

Figure 20 - Making Explicit Non-sequential Relationships (Heuristic 1). 100

Figure 21 - “Submit Order” use case in the Online Broker System

(Somé, 2010). 101

Figure 22 - Description of scenario “Submit Order” in the Online Broker

System. 102

Figure 23 – Scenarios of the “Online Broker System”. 103

Figure 24 – Transforming Simple Episode 109

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

Figure 25 - Mapping scenario constructs into Petri-Net elements. 109

Figure 26 – Transform Scenario into Petri-Net (Method 1). 110

Figure 27 – Integrate Petri-Nets (Method 2). 112

Figure 28 – Register Customer (a), Submit Order (b) and Process Bids

(c) Petri-Nets. 114

Figure 29 - Integrated Petri-Net of “Submit Order”. 116

Figure 30 - Substitution input place (a) and concurrent fusion place (b). 118

Figure 31 – Unambiguity Analysis (Method 3). 120

Figure 32 – Lexical analysis of simple episode (a) and exception (b)

elements. 122

Figure 33 – Parse tree for verb-object (a), subject-verb-object (b) and

subject-verb-object-indirect-object (c) sentences. 123

Figure 34 – Completeness Analysis (Method 4). 124

Figure 35 – Consistency Analysis (Methoid 5). 126

Figure 36 – Integrating “Suppliers” Petri-Nets into the Petri-Net of

“Submit Order”. 128

Figure 37 – Reachability graph (a) and Reachability analysis results (b)

of “Submit Order” scenario. 129

Figure 38 - C&L - Lua Architecture (Sarmiento et al., 2014). 139

Figure 39 - High Level Architecture of Extended C&L 140

Figure 40 – Scenario to Identify the Scenario Elements 143

Figure 41 –Scenario to Verify the Main Components of Scenario

Context 143

Figure 42 –Scenario to Verify the Main Components of Scenario

Resource 143

Figure 43 – Scenario to Verify the Main Components of Scenario

Episodes 144

Figure 44 – Scenario to Verify the Main Components of Scenario

Exceptions 144

Figure 45 – Relationships among scenarios of Syntax Parser module 144

Figure 46 – Integration Scenario of Syntax Parser Module 145

Figure 47 – Scenario to Clean Scenario of Irrelevant Information 146

Figure 48– Scenario to transform a Scenario into a Petri-Net 148

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

Figure 49 – Scenario to integrate a set of related Petri-Nets 148

Figure 50 – Scenario to Analyze Unambiguity 150

Figure 51 – Scenario to Analyze Completeness 150

Figure 52 – Scenario to Analyze Consistency 150

Figure 53 – Scenario to Analyze Scenario 151

Figure 54 – String Finding Operationalization 152

Figure 55 – NLP Tags (Compendium-js, 2015) 153

Figure 56 – Get sentence components method (Subject, Action-Verb and

Objects). 156

Figure 57 – Syntactic Similarity Implementation. 158

Figure 58 – Reachability Analysis on PIPE2. 160

Figure 59 – Scenario to Generate Feedback 161

Figure 60 - Initial page of the C&L. 163

Figure 61 - Integration scenario to use the C&L. 164

Figure 62 - Add lexicon symbol and add scenario forms. 164

Figure 63 – Visualize Project Form. 165

Figure 64 – Visualize Scenario Form. 166

Figure 65 – Project Analysis Feedback Interface (1). 166

Figure 66 – Project Analysis Feedback Interface (2). 167

Figure 67 – Petri-Net Visualization Interface. 168

Figure 68 - Relation between case study length and average processing

time. 179

Figure 69 – Consistency Analysis Using Petri-Nets in “Broker System”. 183

Figure 70 – Consistency Analysis Using Petri-Nets in “Mobile News”. 184

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

List of Tables

Table 1 – Use Case Template (Cockburn, 2001) 37

Table 2- Scenario template (Leite et al., 2000) 38

Table 3 - Scenario and Use Case Comparison 39

Table 4 – Comparing Requirement Statements Static Analysis

Techniques 66

Table 5 - Comparing Scenarios Static Analysis Techniques 67

Table 6 - Comparing Requirement Statements Dynamic Analysis

Techniques 68

Table 7 – Properties Related to Unambiguity. 75

Table 8 – Intra-scenario Properties Related to Completeness (Continued

on Table 9). 77

Table 9 – Intra-scenario Properties Related to Completeness. 78

Table 10 – Inter-scenario Properties Related to Completeness. 79

Table 11 – Feasibility Property Related to Completeness. 80

Table 12 –Properties Related to Consistency. 81

Table 13 – Scenario Grammar 92

Table 14 – Proximity Index between Scenarios of the Online Broker

System 104

Table 15 – Transforming Scenario Triggering 107

Table 16 – Transforming Episode 107

Table 17 – Transforming Concurrency Construct 108

Table 18 – Transforming Exception 108

Table 19 – Transforming Scenario Completion 108

Table 20 - Scenario Defects Classification 131

Table 21 – Recommendations for Analyzing Unambiguity Properties. 133

Table 22 – Recommendations for Analyzing Completeness (Intra-

Scenario). 133

Table 23 – Recommendations for Analyzing Completeness (Intra-

Scenario). 134

Table 24 – Recommendations for Analyzing Completeness (Inter-

Scenario). 134

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

Table 25 – Recommendations for Analyzing Consistency Properties. 135

Table 26 - Symbol definition in lexicon language. 138

Table 27 – tagging Examples using NLP Tools 153

Table 28 – Rules to Extract Action-Verbs and Nouns 154

Table 29 – Intra-scenario Properties Related to Completeness. 162

Table 30 - Characteristics of the Case Studies 173

Table 31 – Summary of the Baseline for the Case Studies 177

Table 32 – Analysis of Unambiguity using the C&L – Lua. 180

Table 33 – Analysis of Completeness using the C&L – Lua. 182

Table 34 – Analysis of Consistency using the C&L – Lua. 183

Table 35 – Analysis of Correctness using the C&L – Lua. 184

Table 36 - Characteristics of the Admission System Case Study 186

Table 37 - Comparing SRS Analysis Techniques 193

Table 38 - Quantitative Analysis of Online Broke System 203

Table 39 – Unambiguity Analysis of Online Broke System 203

Table 40 - Completeness Analysis of Online Broke System 203

Table 41 - Consistency Analysis of Online Broke System 204

Table 42 - Quantitative Analysis of ATM System 206

Table 43 – Unambiguity Analysis of ATM System 207

Table 44 - Completeness Analysis of ATM System 207

Table 45 - Consistency Analysis of ATM System 207

Table 46 - Quantitative Analysis of Online Broke System 210

Table 47 – Unambiguity Analysis of Dlibra System 210

Table 48 - Completeness Analysis of Dlibra System 211

Table 49 - Quantitative Analysis of Mobile News System 217

Table 50 – Unambiguity Analysis of Mobile News System 217

Table 51 - Completeness Analysis of Mobile News System 218

Table 52 - Quality Indicators of ARM (Wilson et al., 1997) 224

Table 53 - Expressiveness Quality Model of QuARS (Gnesi et al., 2005) 224

Table 54 - Ambiguity Indicators of SRRE (Tjong, 2008) 225

Table 55 - Requirements language criteria (IEEE, 2011; Femmer et al.,

2014) 225

Table 56 - Potentially problematic constructs (from Berry et al., 2012) 225

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

Table 57 - Quality User Story Framework (Lucassen et al., 2015) 226

Table 58 - Taxonomy of defects in use case models (Anda and Sjoberg,

2002) 226

Table 59 - Scenario Checklist (Leite et al., 2000; Leite et al., 2005) 227

Table 60 - The 7Cs Verification Heuristics (Phalp et al., 2007) 228

Table 61 - The Use Case Defects (Ciemniewska and Jurkiewicz, 2007) 229

Table 62 - Use Case Checklist of Text2Test (Sinha et al., 2010) 230

Table 63 - Common use case defects (Liu et al., 2014) 230

Table 64 – Consistency and Completeness in CMPN (Lee et al.,1998) 230

Table 65 – Faults Detected by Time Petri-Nets (Lee et al., 2001) 231

Table 66 – Use Case Defect Classification (Denger et al., 2005) 231

Table 67 – Properties of UC-LTSs (Sinnig et al., 2009) 231

Table 68 - Properties of Timed and Controlled Petri-Nets (Zhao and

Duan, 2009) 231

Table 69 – Properties of Reactive Petri-Nets (Somé, 2010) 231

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

List of Abbreviations

BNF Backus Normal Form

C&L Cenários e Léxico

CSP Communicating Sequential Processes

DEO Discrepancies, Errors, and Omissions

IEEE Institute of Electrical and Electronics Engineers

ISO International Standards Organization

FR Functional requirements

GORE Goal-Oriented Requirements Engineering Approaches

LTS Labeled Transition Systems

LEL Language Extended Lexicon

LSC Live Sequence Charts

MSC Message Sequence Charts

MVC Model-View-Controller

NL Natural Language

NLP Natural Language Processing

NFR Non-functional requirements

POS Part-of-Speech - POS

PN Petri-Nets

PNML Petri Net Markup Language

RE Requirements Engineering

RNL Restricted-form of natural language

SADT Structured Analysis and Design Technique

SIG Soft-goals Interdependency Graph

SD Software Development

SRS Software Requirements Specification

UML Unified Modeling Language

UofD Universe of Discourse

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

21

1
Introduction

Many research studies have shown how the Requirements Engineering (RE)

activities play an important role in the reliability, cost and safety of a software

system; especially, the importance of early requirements analysis on the

reduction of the development costs, confusion and complexity in the later

activities of Software Development (SD). RE activities are important mainly for

two reasons. First, they help software development stakeholders to better

understand and communicate the software requirements. Second, their main

output, i.e. the Software Requirements Specification (SRS) serves as the basis for

later software development activities, e.g., design, coding and testing.

Therefore, it is highly desirable to produce a Software Requirements

Specification with a good quality, i.e., a SRS that is more correct, consistent,

complete, unambiguous, understandable and traceable (IEEE, 1998, Lee et al.,

1998; Glinz, 2000; Lee et al., 2001; Cheung et al, 2006; Somé, 2010; Zhao and

Duan, 2009).

Requirements Analysis includes activities related to verification and

validation (Leite, 2007), such as finding defects in structural and behavioral

properties of SRS documents and addressing problems related to these properties,

which could reduce most of the risks in the later activities of software

development. However, requirements analysis is still an extensive and iterative

process, which is mostly performed manually, requiring a great effort and taking a

lot of time.

Requirements described through rigorous or tabular specifications enable

automated analysis by simulating a sequence of events that represents a narrow

aspect of a system’s required behavior; these detect several classes of faults by

checking specification properties (Lamsweerde et al., 1998; Heitmeyer, 2007).

However, these practices are expensive and not widely used in industrial practice.

For practical reasons, and in order to allow for an easy communication with

stakeholders, informal or semiformal representations are widely used by user-

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

22

oriented approaches. User-oriented approaches are dominant during

Requirements Engineering activities in industry; and, one of the key elements in

this perspective is the notion of scenarios. In this context, a SRS is represented as

a collection of scenarios and described by specific flows of events and their guard

conditions. The use of scenarios helps understanding a specific situation in an

application, prioritizing their behavior (Leite et al., 2000). Some of the most

prominent languages to write scenarios are restricted-form of use case

descriptions (Cockburn, 2001), scenario descriptions (Leite et al., 2000), UML

dynamic behavior (UML, 2015) diagrams and Message Sequence Charts

(Andersson and Bergstrand, 1995).

The graphical notation based languages for writing scenarios are very

attractive and user-friendly; however, they can be difficult to design, and domain

experts cannot reasonably be asked to draw them (Gutiérrez, 2008). Although

these languages provide an accessible visualization of models, they lack formal

semantics to support the analysis of structural and behavioral properties of the

modeled system.

According to Glinz, (2000), in the literature, there is no clear distinction

between natural language-based scenarios and use case descriptions, both

scenarios and use cases describe situations that could possibly happen between the

users and a system. However, the scenario language proposed by Leite et al

(2000) also helps on understanding specific situations in an application,

prioritizing their behavior.

In this thesis, scenario and use case are considered synonymous because

they are described by similar components. There are several different templates or

syntax for writing scenarios, and some of the most common components used to

detail scenarios are: Title/Name, Goal, Pre-condition, Post-condition, Actors,

Episodes/Main Flow and Exceptions/Alternative Flows.

Unfortunately, natural language-based scenarios exhibit some shortcomings:

(1) informally specified scenarios are usually hard to analyze, because natural

language is by definition ambiguous; (2) modularity is poorly supported, because

the relationships among scenarios are rarely represented explicitly; and (3)

currently, there are no systematic approaches to identify and make explicit

potential concurrency issues (e.g. deadlock, non-determinism) in initial

requirements descriptions.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

23

According to Lee et al. (1998), although such subsets of scenarios might

seemingly be independent, they are rarely truly independent in practice. A set of

scenarios can be considered as a set of concurrently executing threads. Thus,

from the concurrency perspective, scenarios are rarely truly independent in

practice; they may interact or compete with each other by communication

channels or shared resources, what can lead to erroneous situations such as

deadlocks.

1.1.
Motivation

Because of inherent ambiguity of natural language (NL), defects are

inevitably introduced into scenario-based SRS. Thus, assessing the quality of a

SRS document is not a simple process, mainly, because:

 Finding defects in scenarios is an important activity mostly performed

manually, which is expensive, time-consuming and error-prone.

 Multiple users with different viewpoints and conflicting needs about the

system are involved at RE activities.

 Relationships among scenarios are rarely represented explicitly (Lee et al.,

1998, Leite et al., 2000). Scenarios are related to other scenarios by

sequential (precedence order) and non-sequential relationships (indistinct

sequential order, concurrency or parallelism).

 Heuristics for finding non-explicit relationships among scenarios are rarely

proposed (Leite et al., 2005).

 Finding defects from the relationships among different scenarios is a

complex activity. It is necessary to execute (or simulate the behavior) a set

of scenarios for detecting defects from the relationships among them

(Denger et al., 2005).

 Most of the defects found by analysis techniques are in fact simple

linguistic defects in single scenarios (Adapted from Gnesi et al., 2005).

Ambiguity may lead to incomplete, inconsistent and incorrect scenario-

based SRS documents. Since a scenario-based SRS describes requirements

statements using scenarios and their relationships: Ambiguity occurs when two or

more users have different interpretations of the same requirement statement stated

in a single scenario. Incompleteness in a single scenario or involving multiple

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

24

scenarios occurs because the world is complex; as such, users or clients are not

able to identify and develop all relevant requirements within scenarios.

Inconsistency occurs when two or more users have conflicting or overriding

requirements, thus, scenarios can overlap other scenarios. Incorrect scenarios

occur when the acquired requirements do not accurately reflect the facts, or

erroneous predicts about future states.

Some examples of defects that hurt Unambiguity, Completeness, and

Consistency quality properties in scenario-based SRS include:

 Unambiguity: Different interpretations of the same requirement;

o Title contains subjective words or phrases (e.g., similar, better);

o Episode contains weak words or phrases (e.g., can, might);

 Completeness: Fully developed requirement statements;

o Actor does not participate in any episode of the main flow;

o Conditional episode is not conform to the syntax rules;

o Related Scenario does not exist in the set of Scenarios;

 Consistency: Free of conflicting or overriding requirement statements;

o Pre-condition coincidence: non-determinism (warning);

o Bi-directional reference among related scenarios (circular

inclusion);

o Never enabled sequence of episodes (or steps);

Usually, these defects are fixed in software design activities; however,

ambiguity, incompleteness, inconsistency and incorrectness in scenarios must be

resolved in early activities of software development (i.e., RE activities). It

increases the software reliability and improves the productivity of software

development (Lee et al., 1998). The importance of SRS quality has been

recognized by several studies (Boehm and Basili, 2001; Bernstein and Yuhas,

2005).

1.2.
Problem

Scenario specifications are usually informal or semi-formal, and in these

cases, they are not the best choice for further automated analysis (including

graphical notation based models) because they lack of formal semantics to support

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

25

it. Thus, there is a lack of formal semantics to support the early analysis of

structural and behavioral properties of systems described as scenarios.

Several research studies have shown the importance to formalize scenarios

through restricted-form of use case descriptions (Somé, 2010), Message Sequence

Charts - MSC (Andersson, and Bergstrand, 1995; Damas et al., 2006), Live

Sequence Charts - LSC (Damm and Harel, 2001) or BNF-like gramar (Hsia et al.,

1994); other researchers have used concepts from Petri-Nets (Lee et al., 1998; Lee

et al., 2001; Cheung et al., 2006; Zhao and Duan, 2009; Somé, 2010), Statecharts

(Glinz, 2000; Denger et al., 2005), Labeled Transition Systems - LTS (Sinnig et

al., 2007) or Communicating Sequential Processes - CSP (Cabral and Sampaio,

2006).

 These literature circles argue for the need for a precise representation for

scenarios in order to be useful in automated analysis, model derivation or test

generation. In these approaches, scenarios are described by a variety of scenario

notations, in some cases with rigorous semantics; scenarios are used to document

system requirements, then, scenarios are translated into Petri-Nets - PN (Murata,

1989), LTS (Keller, 1976) or CSP (Roscoe, 1998); which are used as the

mechanism to enable rigorous analysis. The resulting formal models can be

further processed and analyzed using available tools to verify structural and

behavioral properties, ensuring mainly the consistency and correctness.

The translation-based approaches are difficult to apply because it requires a

strong knowledge and experience on formal modeling for translating initial

scenarios into formal models. Other drawbacks are:

 There is no consensus on how to represent scenarios; some languages

depend on formal definition of pre-conditions and post-conditions within

single scenarios (Lee et al., 1998; Sinnig et al., 2009);

 Most of the existing approaches do not provide formal definition of

translation rules between scenario elements and formal model elements,

which can make the automation more difficult;

 Most of the existing approaches do not provide procedures for integrating

a set of related scenarios into a whole representation, and detect defects

from these relationships. Scenarios interact by sequential and non-

sequential relationships;

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

26

 In most of the existing approaches, the use of the analysis feedback of

equivalent formal models to improve the scenario descriptions is difficult,

since they do not provide ways of tracing to defects in the original

scenario.

1.3.
Objective

Motivated by the importance of improving the quality of Software

Requirements Specification documents based on scenario representations, we are

propose a new approach for scenarios analysis that is based on Petri-Nets and

Natural Language Processing (NLP) techniques, which exploits inter-scenario

relationships to overcome major unsolved problems and improve the state of

the art.

1.4.
Thesis

“NATURAL LANGUAGE-BASED SCENARIOS CAN BE ANALYZED

THROUGH PETRI-NETS AND NLP” BY AN APPROACH THAT:

 Show defects that hurt unambiguity in single scenarios at RE;

 Show defects that hurt completeness in single scenarios at RE;

 Show defects that hurt completeness from relationships among scenarios

at RE;

 Show defects that hurt consistency and correctness in Petri-Nets derived

from scenarios and their relationships at RE;

 Support modularity by proposing heuristics for finding explicit and non-

explicit relationships among scenarios;

 Support traceability by indicating defects in Petri-Nets and showing the

source of the defects in scenarios;

 Can be implemented through a software tool.

1.5.
Proposed Solution

As scenarios are useful in other development activities, these scenarios must

be correct and valid. Therefore, effectiveness of scenarios analysis could be

significantly improved by an approach, which could discover defects that are

hidden in scenarios and their relationships in an automatic way. The higher goal

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

27

of this thesis is to develop a “Petri-Net and NLP based Approach as an

Effective Way to Analyze the Acquired Scenarios”, which evaluates structural

and behavioral properties related to Unambiguity, Completeness, Consistency

and Correctness. The following goals refine the stated goal:

 Define a restricted-form of natural language (RNL) to write scenarios;

 Develop heuristics for finding non-explicit relationships among scenarios;

 Develop a systematic procedure that transforms scenarios stated in a RNL

to Petri-Nets;

 Improve the existing NLP Parsing strategies to correctly identify the

Subject, Objects and Action-Verb in textual scenario sentences.

 Employ the non-functional requirements (NFR) approach to:

o Model the relationships between unambiguity, completeness,

consistency and correctness qualities of scenarios;

o Identify the properties related to unambiguity, completeness,

consistency and correctness;

 Develop heuristics for searching defect indicators that hurt properties

related to unambiguity, completeness, consistency and correctness

qualities.

1.5.1.
Approach Overview

Our scenarios analysis approach checks the acquired scenarios by detecting

wrong information, missing information and erroneous situations that can be

hidden within scenarios and their relationships. In this regard, we instantiate a

Quality Model for Scenarios (defined in this thesis), and consider the results

achieved by NLP and Petri-Net based related work.

The related work in using the potential of Petri-Nets for scenario

formalization indicates that Petri-Nets are an effective mechanism for scenario-

based SRS analysis. The motivation behind translating scenarios into Petri-Nets

can be attributed to three reasons: First, the reachability analysis can reveal the

incorrect behavior of a set of scenarios (mapped into Petri-Nets); Second, the

availability of Petri-Net tools, such as PIPE2 (2015); and Third, the portability of

Petri-Net models (interchangeable format between tools - Petri Net Markup

Language - PNML).

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

28

So, in our approach: First, requirements engineers start to describe the

different functionalities, services or situations of the system as scenarios

using a RNL. Second, irrelevant information within scenario elements are

removed. Third, in order to perform an automated analysis of scenarios, an initial

system design is derived by translating these scenarios into Place/Transition

Petri-Nets, and synthesizing them into a consistent whole Petri-Net. Fourth,

scenarios and their resulting Petri-Nets are automatically analyzed to evaluate

some properties related to unambiguity, completeness, consistency and

correctness. Fifth, the analysis outcome is formatted and returned to the

requirements engineers. Sixth, if defects are found, the analysis feedback is

used to improve the scenario descriptions, since the identified defects and their

causes can be traced to the scenarios. Figure 1 depicts an overview of our

approach. The different phases of our approach were implemented in the C&L

(2010) prototype tool.

Figure 1 – Overview of the Scenarios Analysis Approach.

1.5.2.
Expected Contribution

The main contribution of this thesis is an automated analysis approach of

structural and behavioral properties in scenario specifications. The analysis is able

to detect defects that provide evidence that the properties related to Unambiguity,

Completeness, Consistency and Correctness were violated.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

29

This approach benefits from both the precision of graphical Petri-Nets and

the usability of textual scenarios; and it also allows an easier integration to

available Petri-Net tools like PIPE2 (2015).

The objective of this thesis is to contribute with the following results:

 The definition of a Restricted-form of Natural Language-based Scenario

Model, whose elements may be written using a semi-structured linguistic

grammar. This scenario language was initially proposed by Leite et al

(2000).

 The definition of Heuristics for Finding Non-explicit Relationships among

scenarios: Scenarios are related to other scenarios by sequential

(precedence order) and non-sequential relationships. Frequently, non-

sequential relationships are non-explicit.

 The definition of a reusable Quality Model for Scenarios, which organizes

the properties related to Unambiguity, Completeness, Consistency and

Correctness. These properties were based on previous work (Leite et al.,

2000) and related work.

 A procedure to Translate Scenarios stated in a restricted-form of natural

language into Petri-Nets, preserving the consistency between these

equivalent representations.

 A systematic procedure to synthesize a system design from the resulting

Petri-Nets, preserving the original properties of synthesized Petri-Nets.

 Manage the State Explosion Issue (Lee et al., 1998): State explosion issue

is a serious problem when applying Petri-Net analysis to large systems. A

contribution of this thesis is a MULTI-STEP BOTTOM-UP analysis

approach to manage this problem.

 The development of the C&L tool (Cenários & Léxicos): An experimental

tool that automatically detects potential defects in scenarios. For every

potential defects detected, C&L shows it to the user in a understandable

way.

1.5.3.
Evaluation

Five case studies with different degree of complexity were carried out to

evaluate the accuracy and the scalability of the proposed analysis approach. We

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

30

evaluated the accuracy of results produced by the developed tool (C&L-Lua) with

respect to reference solutions elaborated by expert Requirements Engineers of

different universities. These set of scenarios have a near-typical profile, i.e., they

contain typical defects in industrial projects (UCDB, 2015).

1.6.
Outline

This thesis is organized as follows:

Chapter 2: Presents a general introduction of Requirements Engineering,

Concurrency and Petri-Nets. It also presents the state of the art in requirements

analysis, compare the different existing approaches, and identify the most

important research gaps.

Chapter 3: Presents a reusable Quality Model for Scenarios by modeling

the relationships between unambiguity, completeness, consistency and correctness

qualities.

Chapter 4: Presents the proposed approach for scenarios analysis. It

includes the proposed scenario language, which is used to write scenarios

enabling further transformations into executable representations; the procedure for

translating scenarios into Petri-Nets; the strategy for evaluating structural and

behavioral properties of scenarios; and the strategy for managing the state

explosion issue of Petri-Nets.

Chapter 5: Presents the C&L tool architecture and its implementation. An

experimental tool that automatically detects potential defects in scenarios

Chapter 6: Shows the evaluation of the developed approach by finding

defects in scenario specifications.

Chapter 7: Discusses the differences between our work and those related

work and summarize our improvements on the state-of-the-art. Presents the

conclusions, limitations, and some suggestions for future work.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

31

2
Theoretical Background

This chapter begins with a general overview of Requirements Engineering

and techniques to document and analyze scenarios (Section 2.1). Next, Section 2.2

investigates the topic of requirements quality. Concurrency and Petri-Nets are

introduced in a comprehensive way in Section 2.3. Section 2.4 discusses research

(or tools) related to the analysis of Natural Language based SRSs, compares

techniques to analyze static and dynamic aspects related to quality attributes of

requirements in a comprehensive way, and highlight research gaps. Finally,

Section 2.5 concludes by discussing the relationships between scenarios and

concurrent systems.

2.1.
Requirements Engineering

The development of software systems with acceptable quality and lower

cost is a constant concern for the software development industry as well as it

customers. An erroneous or incomplete understanding of the problem that

software aims to solve may lead to software systems correctly implemented, but

missing the customer needs. One of the main success factors at the activities

involved in the SD process, is the correct understanding of the problem domain,

i.e., a more clear and precise SRS; but this is not always possible because of

multiple stakeholders involved in the software development process, with

different needs, assumptions and points of view of the domain. Thus,

Requirements engineering is closely related to the good quality of software

systems; thus, it is a key factor for successful software development companies.

Requirements Engineering (RE) is one of the most crucial and complex

activities in software development and bridges the gap between customers needs

and software engineering. According to Pohl (1994), requirements engineering

may be understood as a process with a set of activities; where the desired output

of this process is a document (SRS - Software Requirements Specification)

expressed using a formal language on which most of stakeholders agree. This

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

32

process inputs are user’s points of view (usually ambiguous) of the system to be

built; these inputs are obtained using an informal language (or making use of

graphics), usually natural language.

Similarly, Leite (2007) subdivided the Requirements engineering into

elicitation, modeling, analysis, and management activities (Figure 2). Elicitation

is the first step and responsible to identify most of relevant key stakeholders and

discover what they need. Modeling is the process of building abstract descriptions

of the requirements that are amenable to interpretation. Analysis corresponds to

the generation of a SRS with acceptable quality and it is subdivided into

verification and validation. Requirements management is transversal to RE

process, and it consists of version control, change control, and traceability of the

requirements (Leite, 2007). The input of this process is the Universe of Discourse

(UofD), i.e., it includes all the sources of information and all the people related to

the software.

Figure 2 - Requirement Engineering (Leite, 2007)

2.1.1.
Requirements

Poorly defined requirements are the major cause for software projects to

fail. Requirements in software engineering are descriptions of actions, behavior

and constraints of a system in order to meet stakeholders’ needs. According to

Sommerville (2010), requirement is the specification of what is to be

implemented, and he classified requirements into functional and non-functional

Discrepancies, errors, omissions

requirements

clients
method

tools

software engineers (points of view)

UofD

UofD

UofD

SELECT

PEOPLE

ELICIT

MODELING

ANALYSIS

SELECT

METHOD

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

33

requirements and distinguished between two different levels of abstraction: user

requirements and system requirements.

 Functional requirements (FR) define the behavior of the system and what

it should do.

 Non-functional requirements (NFR) also known as quality attributes (QA)

or soft-goals (van Lamsweerde, 2001), describe the system attributes and

define the constraints of a system.

 User requirements define the software functionality from a user

perspective. They define what the software has to do to accomplish the

user’s goals.

 System requirements are more detailed description of software functions,

services and operational constraints.

2.1.2.
Requirements Specification

Once the requirements are gathered, they need to be described.

Requirements are expressed in a software requirements document, which is also

called a SRS. The document includes requirements definitions, requirements

specifications or system models. Usually, requirements definitions and

requirements specifications are presented separately. However, in some cases

these two are incorporated into a single description.

A requirements definition is a high-level abstract statement of the services

a system must provide and the constraints it must meet. It is expressed in a natural

language and without any reference to a solution, and targeted mainly at clients

and project managers. The definition is based on information supplied by clients

or users.

A requirements specification (also called a functional specification) is a

structured description describing the services the system must meet in a more

detailed manner. It may contain references to technologies or solutions. The

description may serve as a contract between software developers and customers.

The requirements specification expands the requirements definition and is

targeted mainly at project managers and software developers.

Sommerville (2010) called requirements definition, a user requirements

specification; and requirements specification, a system requirements specification.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

34

To document software requirements there are various techniques and

languages, which may be classified as being informal, formal or semi-formal.

 Informal techniques use unrestricted natural language to document

requirements. The advantage of natural language is that it is universal and

flexible, but unfortunately is ambiguous.

 Formal languages are based on rigorous mathematical or logical reasoning

for which the syntax, semantics and rules are explicitly defined (e.g.

Temporal Logic, First Order Logic, SCR, Z, B, Petri-Nets). These methods

are accurate and eliminate ambiguity, but they are hard to understand

without a specific training and require a formal background.

 Semi-formal techniques include diagrams and tabular techniques that

present information in a structured form (e.g. UML diagrams, Message

Sequence Charts diagrams, ER models). They try to close the gap between

two previous techniques.

2.1.3.
Scenario-Based Requirements Specification

While requirements are statements describing the expected system services,

scenario-based representations have attracted considerable attention in RE. A

scenario describes a situation that could possibly happen in a system.

In this context, a SRS document could be described as a collection of

scenarios and each scenario is described by specific flows of events and their

guard conditions. The use of scenarios helps understanding a specific situation in

an application, prioritizing their behavior (Leite et al., 2000).

The main purpose of scenarios is to stimulate thinking about possible

events, opportunities and risks in a system. They are often applied to model and

communicate requirements among stakeholders due to their comprehensibility

(Glinz, 2000; Leite et al., 2000).

2.1.3.1.
Scenarios

According to Leite et al. (2000), the word scenario has a particular meaning

in the software engineering community. It is “a description technique that is both

process-focused and user centric”. It is widely used in requirements engineering

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

35

because it helps engineers to better understand the software requirements and its

interface with the environment.

According to Glinz (2000), in software engineering, scenarios are described

as “an ordered set of interactions between partners, usually between a system and

a set of actors external to the system”. Other researchers have similar definitions.

For instance, Leite at al. (2000) defines a scenario as a partial description of the

application behavior that occurs at a given moment in a specific geographical

context - a situation. Van Lamsweerde and Willemet (1998) framed the term to

“temporal sequence of interactions among different agents in the restricted context

of achieving some implicit purpose”.

In literature there is no clear distinction between scenarios and use cases.

While some authors consider that each scenario corresponds to one use case

(Glinz, 2000), others define a scenario as sequences of use case steps that

represent different paths through a use case (Cockburn, 2001). According to Glinz

(2000), a scenario may comprise a concrete sequence of interaction steps (instance

scenario) or a set of possible interaction steps (type scenario).

2.1.3.2.
Representing Scenarios

There are a wide variety of scenarios representations in the literature, each

one with quite different purposes. Therefore, scenarios can take many forms and

provide various types of information on different levels of abstraction and

formalism. Some of the most prominent languages to write scenarios are semi-

structured-form of use case descriptions (Cockburn, 2001), restricted-form of

scenario descriptions (Leite at al., 2000), UML sequence diagrams (UML, 2015),

UML activity diagrams (UML, 2015), MSC (Andersson and Bergstrand, 1995),

LSC (Damm and Harel, 2001), StateCharts (Harel, 1987) or Petri-Nets (Murata,

1989).

There are several styles in which scenarios are written. In system

development, Alexander and Maiden (2005) defined six common types of

scenarios used. These can have different representation style and are defined as

follow:

 Story: Narrative description of connected sequence of events, e.g. a user

story that is written in plain text as often seen in agile methodologies.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

36

 Sequence: straight-line of interactive steps taken by human or system

agents, e.g. List of numbered user actions.

 Structure: More elaborated representation of a scenario, e.g. activity

diagram.

 Situation: Snapshot of a future state of the system, e.g. a picture or an

example of a user interface of an imagined future state.

 Simulation: Models to explore and animate stories or situations, e.g.

animated diagram to show the eventual real effects of alternative

conditions and courses of action.

 Storyboard: Drawing or a sequence of drawings to describe a story, e.g.

mock-ups of a flow that are linked together.

Natural language-based scenarios like use case (Cockburn, 2001) or

scenario (Leite at al., 2000) representations, are widely used to specify software

requirements because they promote the communication between engineers and

stakeholders, even when they have no modeling background. Furthermore, natural

language-based scenarios offer several practical advantages: (1) Scenarios are

easy to describe and understand; (2) They are scalable; the behavior of a large and

complex system can be represented as a collection of independently and

incrementally developed scenarios; and (3) It is relatively easy to provide

traceability throughout the design (Lee et al., 1998).

2.1.3.3.
Use Case Representation

A typical use case (Cockburn, 2001) describes the interaction (triggered by

an external actor in order to achieve a goal) between a system and its

environment. Every use case constitutes a goal-oriented set of interactions

between external actors and the system under consideration. The term actor is

used to describe any person or system that has a goal in the system under

discussion or interacts with the system to achieve some other actor’s goal. A

primary actor triggers the system behavior in order to achieve a certain goal. A

secondary actor interacts with the system but does not trigger the use case.

A use case is completed successfully when the goal that is associated with it is

reached. Use case descriptions also include possible extensions to this sequence,

e.g., alternative sequences that may also satisfy the goal, as well as sequences that

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

37

may lead to failure in completing the service in case of exceptional behavior, or

some fault. In the textual notation proposed by Cockburn (2001), the main flow is

expressed, in the ‘‘description’’ section, by an indexed sequence of NL sentences,

describing a sequence of actions of the system. Variations are expressed (in the

‘‘extensions’’ section) as alternatives to the main flow, linked by their index to the

point of the main flow from which they branch as a variation (See Table 1).
Table 1 – Use Case Template (Cockburn, 2001)

Element Description
Use Case # <The name is the goal as a short active verb phrase>
Goal in Context <A longer statement of the goal in context if needed>
Scope &
Level

<What system is being considered black box under design>
<One of: Summary, Primary task, Sub-function>

Preconditions <What we expect is already the state of the world>
Success End
Condition

<The state of the world upon successful completion>

Failed End Condition <The state of the world if goal abandoned>
Primary,
 Secondary Actors

<A role name or description for the primary actor>
<Other systems relied upon to accomplish the use case >

Trigger <The action upon the system that starts the use case>
Description Step Action
 1 <Put here the steps of the scenario from trigger to goal delivery, and

any cleanup after>
Extensions Step Branching Action
 1a <Condition causing branching>

<Action or name of sub-use case>
Sub-Variations Step Branching Action
 1 <List of variations>

2.1.3.4.
Scenario Representation

The scenario language proposed by Leite et al. (2000) describes situations in

the system and its relation with other situations and the environment. This

description is made using natural language. The proposed structure of this model

is composed of the following elements: title, goal, context, resources, actors,

episodes, exceptions and constraints (See Table 2). In the episodes, the

operational behavior of the situations is described in natural language, but using

special operators for optionality, concurrency and selection. A scenario is

identified by a title and must satisfy a goal. The path to achieving this goal must

be described in detail in its episodes. The episodes represent the main stream of

the actions, but also include variations and possible alternatives. An exception can

occur during the execution of episodes, which indicates that there is an obstacle to

satisfy the goal. The treatment to this exception does not need to satisfy the

scenario goal.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

38

Table 2- Scenario template (Leite et al., 2000)
Element Description
Title <Identifies the scenario>
Goal <Describe the purpose of the scenario>
Context <Describes the scenario initial state>

<Must be described through at least one of these options: precondition, geographical
or temporal location>

Resources <Passive entities used by the scenario to achieve its goal>
Actors <Active entities directly involved with the situation>
Episodes <Sequential sentences in chronological order with the participation of actors and use

of resources>
<One of: Simple, Conditional, Optional>
<Non-sequential order can be bounded by the symbol “#”, it is used to describe
parallel or concurrent episodes>

Exception Cause Solution
 <Situations that prevent the proper course

of the scenario>
<Its treatment should be described>

The attribute constraint is used to describe non-functional aspects that may

restrict the goal of a scenario to be achieved within the desired quality. These non-

functional aspects can be related to context, resources and episodes

The existence of relationships among scenarios is an important

characteristic of this representation. Scenarios can be connected to other scenarios

through links, yielding a complex network of relationships. These links can be of

four distinct types: constraint, precondition, sub-scenario and exception. A

constraint as well as a precondition can be described by another scenario. Sub-

scenario or exception relationships are defined when an episode (sentence) or

exception (solution) of a scenario is detailed in another scenario.

2.1.4.
Natural Language-based Scenario Representations Compared

There is no clear and correct answer when it comes to selecting the right

representation or language for writing scenarios. The selection of appropriate

technique depends on different factors and can be different for every project. Most

of the existing languages or templates for writing use cases are extensions based

on textual use case template proposed by Cockburn (2001). Therefore, most of the

existing use case templates only represent specific situations between the user and

the system through user interface. Other drawbacks of use cases based on

Cockburn (2001) template are the following:

 Lack of precise definition, which originated that several companies have

reinvented their own versions (Lee et al., 1998; Sinnig et al., 2009).

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

39

 Consider only the user interactions with the system.

 The relationships among use cases are rarely explicit.

On the other hand, the scenario language proposed by Leite et al. (2000)

represents situations in the domain application. A situation describes the

interactions among actors in the Universe of Discourse, including interactions

with a software system (existing or a future one) or the internal behavior of the

application. Besides in Leite et al. (2000), are presented powerful characteristics

to make explicit the relationships among different scenarios.
Table 3 - Scenario and Use Case Comparison

Scenario (Leite et al., 2000) Use Case (Cockburn, 2001)
Title Use Case #
Goal Goal in Context

Scope & Level
Preconditions
Success End Condition

Context

Failed End Condition
Resources Not applicable

Primary, Secondary Actors Actors
Trigger

Episodes Description
Extensions Exception
Sub-Variations

Table 3 compares the elements that compose the scenario language (Leite et

al., 2000) and use case representation (Cockburn, 2001). Scenario title and goal

are equivalent to Use Case name and goal, respectively. Scenario context can be

equivalent to Use Case scope & level, pre-conditions and conditions. Scenario

episodes are equivalent to use case description element. Scenario exception can be

represented by use case extensions or sub-variations because they are triggered by

situations that prevent the main course of actions. Scenario resources element is

not applicable to use cases because use case does not consider this element.

2.2.
Quality in Software Requirements Specification

Software quality is defined by the IEEE as "the degree to which a system,

component or process Answer: (1) the specified requirements, and (2) the

expectations or needs of customers or users". On the other hand, the ISO defines

quality as" the totality of characteristics of a product or service that demonstrate

their ability to meet needs specified or implied". Therefore, these two definitions

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

40

show that the quality of a software product is closely linked to meeting their

requirements.

In requirements engineering, requirements quality is not just about whether

the functionality has been correctly documented (Quality Assurance), but also

depends on non-functional requirements.

2.2.1.
Non-functional Requirements (NFR)

Non-functional requirements (NFRs) are often called quality attributes of a

system. Other terms for non-functional requirements are constraints, quality goals,

quality of service requirements and non-behavioral requirements. In contrast to

functional requirements, non-functional requirements define how a system should

behave. They significantly influence the product quality of the final software

system (Sommerville, 2010).

Quality attributes are hard to specify and are usually stated informally. In

Goal-Oriented Requirements Engineering approaches (GORE), non-functional

requirements are represented as soft-goals, whose satisfaction cannot be

established in a clear-cut sense. The main objective of GORE is to iteratively

refine higher-level requirements until concrete system requirements are obtained.

The NFR framework developed by Chung et al. (2000) is a goal-oriented

approach to represent non-functional requirements.

2.2.1.1.
NFR Framework

The NFR Framework (Chung et al., 2000) is a Goal-Oriented RE approach

for capturing NFRs in the domain of interest, and defining their interdependencies

and operationalizations. The NFR Framework allows to: (1) model the NFRs and

their decomposition, (2) design alternatives for different NFRs, (3) deal with

conflicts, tradeoffs, and priorities, and (4) evaluate the decisions impact centered

on NFRs. These NFRs are modeled using a Soft-goals Interdependency Graph

(SIG). The SIG graphically represent NFRs as soft-goal nodes (clouds); their

refinements using AND/OR decompositions links; their positive/negative inter-

dependencies as some+ (help), some- (hurt), some++ (make), some-- (break)

contribution links; their operationalizations as leaf nodes; and claims as

annotations in natural language. Generally, soft-goals are named using the

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

41

convention Type [Topic1, Topic2...] where Type is the soft-goal and Topic is the

field of application of Type; Topic is optional.

Figure 3 illustrates a very simple SIG that models the Software

Requirements Specification Correctness, by considering its contributions – HELP

links – in Specification Consistency, Completeness and Unambiguity. An inter-

dependency between Consistency and Completeness negatively impacts (HURT)

on both, because increasing Completeness might negatively impact Consistency.

According to Glinz (2000), and Zowghi and Gervasi (2003), there is an important

causal relationship between Consistency, Completeness and Correctness.

Figure 3 - SIG of Correctness.

2.2.2.
Quality Assurance for Software Requirements

Evaluating the quality of a SRS involves aspects related to quality assurance

of software artifacts produced in the requirements engineering process. The

quality of a requirements artifact can be addressed by the use of metrics,

standards, prototyping, indicators or tests. A critical review of these artifacts may

be accomplished through inspections.

Various authors have worked on quality assurance of software requirements.

Some focus on the classification of quality into characteristics (Gnesi et al., 2005;

Wilson et al., 1997; Lucassen et al., 2015; Arora et al., 2015), and the definition of

quality models and metrics to quantify the presence of evidences (or not) of these

characteristics; others developed comprehensive checklists or constructive

approaches (Glinz, 2000; Leite et al. 2000; Denger et al., 2005; Phalp et al., 2007;

Sinha et al., 2010) for detecting defects classified into taxonomy of defects.

Some researches focused in the automatic detection of defects in

requirements (Gnesi et al., 2005; Arora et al., 2015; Sinha et al., 2010), taking

advantage of NLP techniques.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

42

According to Gnesi et al. (2005), a Quality Model is the formalization of the

definition of the term “quality” to be associated to a type of work product. The

typical objectives of a quality model are to define, analyze, and document a

product’s:

 Quality Characteristics: define and document the relevant quality factors

(also known as quality attributes or “ilities”) that are important attributes

of work products (e.g. applications, components, or documents) or

processes that characterizes part of their overall quality (e.g. extensibility,

operational availability, performance, re-usability, …). Quality sub-

characteristics are important properties of quality characteristics.

 Quality Indicators: are specific descriptions of something that provides

evidence either for or against the existence of a specific quality

characteristic or sub- characteristic.

 Quality Metrics: provide numerical values estimating the quality of a work

product or process by measuring the degree to which it possesses a

specific quality characteristic.

2.2.2.1.
Software Requirements Quality Characteristics

Most of the quality models or checklist for software requirements

specifications (detailed in Section 2.5) are based on the quality characteristics

defined by the IEEE std 830-1998 standard (IEEE, 1998). Among others, the

desirable characteristics of a “good” SRS are:

 Complete: An SRS is complete if, most of relevant requirements are

present and each requirement is fully developed (Boehm, 1979). It must

not include situations that will not be encountered or capability features

that are unnecessary (Wilson et al., 1997).

 Consistent: An SRS is consistent when, two or more requirements are not

in conflict with one another (Boehm, 1979).

 Correct: An SRS is correct if and only if, every requirement stated

therein is one that the software shall meet (IEEE, 1998).

 Unambiguity: An SRS is unambiguous if and only if, every requirement

stated therein has only one interpretation (IEEE, 1998). Unambiguity

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

43

requires the specification to be as formal as possible; however, in the vast

majority of requirements specifications, requirements are stated informally

with natural language or at best semi-formally. Thus, unambiguity is very

difficult to achieve. (Glinz, 2000).

The ISO 29148 (IEEE, 2011) standard was created to harmonize a set of

existing standards or quality models, including the IEEE 830-1998 (IEEE, 1998)

standard. It differentiates between quality characteristics for a set of requirements,

such as completeness or consistency, and quality characteristics for individual

requirements, such as ambiguity or singularity. Apart from the “dos”, it also

provides some “don’ts” regarding requirements language (e.g. avoid ambiguous

adverbs, vague pronouns, subjective language, and so on). Some researches

classify these “don’ts” as indicators or smells of ambiguity (Wilson et al., 1997;

Gnesi et al., 2005; Tjong, 2008; Femmer et al., 2014).

In practice, most software requirements specifications do not meet these

quality characteristics. Thus, it is impossible to be complete as well as to assure

correctness due to the completeness fallacy (Leite, 2007).

2.2.2.2.
Verification & Validation

The terms Verification and Validation are commonly used in software

engineering to mean two different types of analysis. According to Boehm (1979),

the usual definitions are:

 Verification: to establish the truth of the correspondence between a

software product and its specification, i.e. are we building the product

right?

 Validation: to establish the fitness or worth of a soft-ware product for its

operational mission, i.e. are we building the right product?

In other words, validation is concerned with checking that the software

meets user’s actual needs, while verification is concerned with whether the

software is well-engineered, error-free, and so on. Verification helps to determine

whether the software is of high quality, but it does not ensure that it is useful

(Easterbrook, 2010).

Verification is a relatively objective process. It includes the activities

associated with producing high quality software: inspection, analysis, simulation

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

44

or checklist heuristics for evaluating that specifications are expressed precisely

enough.

In contrast, validation is a subjective process. It should confirm that the

Universe of Discourse situations, occurrences, have been reported in accordance

with the real world needs of the users. Requirements validation includes

techniques such as mock-up, storyboards and high level prototyping, and must be

performed with clients and users.

A SRS can be verified by the following approaches: (1) inspection, to

examine carefully and critically, especially for flaws; (2) analysis, a series of

logical deductions based on logic or math oriented representations; (3)

simulation, execution of a model, usually with a computer program; (4) checklist,

an examination of the SRS by pre-defined rules, patterns or taxonomies.

Each of the above mentioned approaches for SRS verification has its own

advantages and drawbacks. Formal verification through model checking

techniques can be used for analysis of structural and behavioral properties;

however, this approach is not well suitable for models with large number of states

(the complexity of the generated reachability graph is exponential).

2.2.2.3.
Quality of Scenarios

Many authors have suggested using guidelines for writing use case

descriptions (e.g. Cockburn, 2001; Denger et al., 2005; Phalp et al., 2007) and

such guidance is often entirely plausible. For example, Cockburn’s (2001)

recommendation of “subject...verb... direct object... prepositional phrase”, appears

to be particularly straightforward and intuitive. Although these structure

guidelines are meant to aid composition, the ultimate goal is to improve the

resulting description.

Similarly, other authors suggest to measure compliance with the guideline

suggestions (e.g.; Anda and Sjøberg, 2002; Denger et al., 2005; Leite et al., 2005;

Phalp et al., 2007; Sinha et al., 2010). Indeed, these proposals use inspection

techniques by examination of scenario (or use case) descriptions, and find defects

using checklists.

Leite et al. (2005) developed a scenario-based reading (inspection)

technique to improve the qualities of scenarios. The technique allows identifying

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

45

missing, incorrect, ambiguous, contradicting and overlapping information in

scenarios. The output is a list of discrepancies, errors, and omissions (DEOs). The

inspection process is divided into four steps: plan, prepare, meet and rework.

Their method was applied in 9 different case studies and returned positive results.

It was difficult to find formal definitions of quality characteristics related to

scenarios; most of the authors suggested the use of taxonomy of defects and

checklists to find potential problems. Anda et al. (2009) improved a previous use

case inspection technique (Anda and Sjøberg, 2002), by defining an initial model

of quality attributes for UML use cases.

2.3.
Concurrency

Concurrent systems (i.e., ones where there is more than one process existing

at a time) present characteristics such as non-deterministic and synchronization

between processes. Web systems provide the most obvious examples of

concurrent systems, which can be characterized as a system where there are a

number of different processes being carried out at the same time.

According to Roscoe (1998), what all concurrent systems have in common

is a number of separate processes which need to interact with each other.

Therefore, the crucial thing which makes concurrent systems different from

sequential ones is the fact that their processes interact with each other at the level

of communication (Roscoe, 1998). To understand this point, one process

communicates with another by a named communication channel or a shared

resource (or variable).

Figure 4 – Producer and Consumer Problem Using Petri-Nets

The Producer-Consumer problem is an example of communicating

processes using a named channel called “the buffer”; the producer sends a

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

46

message to the consumer putting an element in the buffer. Figure 4 shows this

communication using a Petri-Net model.

In the Readers-Writers problem, processes communicate with each other by

a shared resource; while the shared resource is being written or modified by the

writer process, it is often necessary to bar other writer or reader processes. Figure

5 shows this communication using a Petri-Net model.

Figure 5 – Reader and Writer Problem Using Petri-Nets

2.3.1.
Synchronization

According to Downey (2005), Synchronization refers to relationships

among several processes and any kind of relationships (before, during, after), i.e.

it is related to the execution order of processes. Synchronization between two

processes means that one process necessarily waits the other process. In sequential

systems, computers execute one process after another, and it is possible to know

the order of execution; but in concurrent systems it is impossible to tell. Examples

of synchronization include: (1) Serialization - event A must happen before Event

B; and (2) Mutual exclusion - events A and B must not happen at the same time.

2.3.2.
Non-determinism

A system exhibits Non-determinism if two different copies of it may behave

differently when given exactly the same inputs (Roscoe, 1998). Concurrent

systems are often non-deterministic because of interleaving accesses on shared

resources, i.e. concurrent systems suffers from limited controllability and

observability problem.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

47

2.3.3.
Synchronization Constraints

Due to non-deterministic behavior, it is difficult to ensure that the system is

free of synchronization bugs. The most common alternative to reduce these bugs

is the use of synchronization constraints to control concurrent access to shared

resources. Serialization and Mutual exclusion are examples of synchronization

constraints. Serialization may seem trivial, but the underlying idea, message

passing, is a real solution for many synchronization problems (Downey, 2005).

The most common constraint is mutual exclusion, or mutex; mutex

guarantees that only one process accesses a shared resource at a time, eliminating

the kinds of synchronization bugs. Like serialization, mutual exclusion can be

implemented using message passing (Downey, 2005).

2.3.4.
Desired Properties of Concurrent Systems

A system should employ the principles of modularity (top-down design) and

make explicit the interconnectivity among modules. Modularity is considered as a

mechanism to deal with the complexity of concurrent systems (Lee et al., 1998).

The design of concurrent systems is often modular and proceeds by first

developing local processes, services, modules or components, and then composing

these modules to one component. While the composing is performed using

synchronization constraints, it is possible to introduce some concurrency bugs that

impair the following desired properties of concurrent systems.

2.3.4.1.
Deadlock-free

A system should not have any deadlock situation. A concurrent system is

deadlocked if no process can make any progress, generally because each is

waiting for communication with others (Roscoe, 1998).

2.3.4.2.
Boundedness

This property refers to the limited capacity of a communication channel or a

shared resource (Murata, 1989). A concurrent system is overflowed when the

number of elements in some channel or resource exceeds a finite capacity.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

48

2.3.5.
Petri-Net

This section presents the fundamentals of Petri-Nets, especially of place-

transition Petri-Nets (Reisig, 1985; Murata, 1989).

Petri-Net is a graphical and mathematical language for modeling and

analysis of systems that are characterized as concurrent, asynchronous,

distributed, parallel, nondeterministic, and/or stochastic. Due to these features,

Petri-Nets can be used for modeling and analysis of: performance, communication

protocols, distributed-software systems, distributed-database systems, concurrent

and parallel programs, industrial control systems, discrete-events systems,

multiprocessor memory systems, dataflow-computing systems, fault-tolerant

systems.

They were introduced by Carl Adam Petri in 1962 at the Technische

Universität Darmstadt, Germany.

A Petri-Net (Figure 6) is a directed, weighted, bipartite graph; and it is

composed of nodes that denote places (Place) or transitions (Transition). Nodes

are linked together by arcs (Arc).

Figure 6 - Petri-Net metamodel (Sarmiento et al., 2015)

2.3.5.1.
Petri-Net Definitions

Transitions are active components. They model the activities that can occur,

thus changing the state of the system. Transitions are only allowed to fire if they

are enabled, which means that all the pre-conditions (input places) for the activity

have been fulfilled.

Places are passive components and placeholders for tokens. They model

communication medium, buffer, geographical location or a possible state

(condition). The current state of the system being modeled is called marking,

which is given by the number of tokens in each place.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

49

Tokens model physical or information object, collection of objects, resource

availability, jobs to perform, flow of control, synchronization conditions, indicator

of state or indicator of condition.

In addition, tokens are used in Petri-Nets to simulate the dynamic and

concurrent activities of systems.

Arcs are of two types. Input arcs start from places and ends at transitions,

while output arcs start at a transition and end at a place.

Definition 2.1. A place-transition Petri-Net (Reisig, 1985) is a five-tuple

PN = (P, T, F, W, M0) where P = {p1, p2, ..., pn} is a finite set of places, T = {t1, t2,

..., tm} is a set of transitions, F  (P×T)  (T×P) is a set of arcs, W : F → {1, 2,

...} is a weight function, M0 : P → {0, 1, 2, ...} is the initial marking and P  T =

 and P  T ≠ .

In addition to have a static structure defined above, systems change over

time and it is of great interest to study its dynamic behavior. In Petri-Nets,

markings represent the states of the system over time. Figure 7 shows an example

of a marked Petri-Net.

Figure 7 - Marked Petri-Net

Definition 2.2. For a PN = (P, T, F, W, M0), a marking is a function M: P

→ {0, 1, 2, ...}, where M(p) is the number of tokens in p. M0 represents PN with

an initial marking.

When a transition fires, it removes tokens from its input places and adds

some at all of its output places. The number of tokens removed/added depends on

the cardinality (weight) of each arc. Figure 8 shows an example of a marked Petri-

Net with a transition enabled for firing.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

50

Figure 8 - (a) Transitions before Firing, (b) Transitions after firing

Definition 2.3. A transition t is enabled for firing at a marking M if M (p) ≥

W(p, t) for any p  ot where ot is the set of input places of t. On firing t, M is

changed to M' such that p  P: M' (p) = M(p) - W(p,t) + W(t,p). M [t M'

denotes firing t at marking M. to is the set of output places of t. The notations op or

po have the same meaning for places.

Definition 2.4. For a PN, a sequence of transitions ϭ =  t1, t2, ..., tn  is

called a firing sequence if and only if M0 [t1, [t2, ..., [tn Mn. In notation, M0 [PN,

ϭ Mn or M0 [ϭ Mn.

2.3.5.2.
Modeling with Petri-Nets

In the real world, events may happen at the same time changing the state of

a system over time. In systems modeled as Petri-Net models, the states of the

system changes via enabling and firing transitions. A system may have many

local states to form a global state.

Due to complex behavior of the systems, there is a need to model the

relationships among several events of the system. In Petri-Net models, we may

describe these relationships using sequential, non-deterministic, concurrency and

synchronization structures.

In a sequential structure, events happen in a sequential order. In Figure 9,

event t0 fires before t1, t1 fires before t3.

Figure 9 - Sequential structure

In a non-deterministic (conflict, choice, decision) structure, only one of the

simultaneously enabled events may happen. In Figure 10, only one of event t1 or

t2 may fire.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

51

Figure 10 - Non-deterministic structure

In a concurrency structure, all simultaneously enabled events may happen.

In Figure 11, events t1 and t2 may fire simultaneously.

Figure 11 - Concurrency structure

In a synchronization structure, an event happens only if all events defined as

pre-conditions or inputs happen. In Figure 12, event t3 fires after events t1 and t2

fire.

Figure 12 - Synchronization structure

In complex systems, several events happen at the same time and interact

with each other. These relationships among events can lead to problems or

erroneous situations such as deadlocks.

2.3.5.3.
Analysis of Petri-Nets

One feature that makes Petri-Nets interesting is that they also provide the

capability to analyze model properties. The analysis of Petri-Net models evaluates

defects related to structural and dynamic properties. The structural properties can

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

52

be detected traversing the flow relation between places and transitions, while

dynamic properties can be detected using the initial marking and markings which

can be reached by firing transitions. Simulation, reachability/coverability or

invariant analysis are methods for detecting defects due to dynamic properties

like reachability, boundedness, liveness, and deadlock free (Reisig, 1985).

The most important analysis strategy is the reachability (Murata, 1989).

Figure 13 shows that the marking of the Petri-net in Figure 13 (b) is reachable

from the marking in Figure 13 (a).

Figure 13 - (a) Transitions before Firing, (b) Transitions after firing

Definition 2.5. For a PN = (P, T, F, W, M0), a marking M is said to be

reachable if and only if there exists a firing sequence ϭ such that M0 [ϭ M. In

notation, M0 [PN,* M or M0 [*M. represents the set of all reachable markings of

PN.

If a Petri-Net is to be a model of a real hardware device, one of the

important properties it should have is safeness. Safeness is a special case of the

property called Boundedness.

Definition 2.6. A PN is bounded if the number of tokens in each place does

not exceed a finite number k for any marking reachable from M0. A PN is safe if it

is 1-bounded.

Other important property is the concept of liveness (when modeling

operating systems); and it is closely related to the complete absence of deadlocks

(Murata, 1989).

Definition 2.7. For a PN, a transition t is said to be live if it is possible to

ultimately fire it by progressing through some firing sequence, i.e. if and only if

M [M0, M´ : M[*M´[t. PN is said to be live if and only if every transition is

live.

Definition 2.8. For a PN, if there exists a marking M [M0 such that M

[t for any t  T, then marking M is called a dead marking of PN, i.e., a deadlock.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

53

A Petri-Net PN is called deadlock-free if deadlock does not exist in PN. M [t

denotes that t is disenabled under M.

Another desirable property is that the system (when modeling

manufacturing systems) can be re-initialized from any reachable state.

Definition 2.9. A PN is reversible if M0 is reachable from each other

reachable marking M.

The reachability analysis method generates a reachability graph which

contains reachable markings as nodes and transitions as arcs (which effect the

change from one marking to another by firing). We can get an overview about

possible states. Figure 14 shows the reachability graph for Petri-Net depicted in

Figure 12 using the PIPE2 (2015) tool.

Figure 14 - A Reachable Petri-Net (generated using PIPE2, 2015)

In case of Petri-Nets with infinite many markings the computation of the

reachability graph with this method fails. The state explosion issue is a serious

problem when applying Petri-Net analysis to large systems, In fact, the generation

of the reachability graph of a Petri-Net model requires an exponential space.

Research continues to work on how to do it efficiently.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

54

2.4.
Considerations about Scenarios and Concurrency

Such as introduced by Lee et al (1998) and Leite et al (2000), scenarios are

rarely truly independent in practice; they may interact by complex relationships,

what can lead to erroneous situations such as conflicts. Some of these

relationships include potentially concurrent scenarios.

Considering that some languages for writing scenarios present

characteristics for representing or identifying the relationships among different

scenarios; they can be used to perform early concurrent system reliability

assessment, i.e. scenarios can be used to detect potential concurrency defects at

early software development activities.

Thus, scenarios are a key concept for writing software requirements,

because: (1) they describe requirements such that users and developers can easily

understand; (2) they may make explicit the relationships between scenarios, such

as introduced by Leite et al (2000); and (3) they may support the early detection

and resolution of quality defects.

Due to these characteristics, a scenario-driven requirements engineering

approach has the potential to influence positively the Software Development

process. Requirements engineers need to pay special attention to its quality, in

special with respect to unambiguity, completeness, consistency and correctness

since they will anchor further development.

2.5.
Related Work

This sub section: (1) discusses research (or tools) related to the analysis of

Natural Language based Software Requirements Specifications; (2) compares

techniques to analyze static and dynamic aspects related to quality attributes of

requirements; and finally (3) research gaps are appointed.

2.5.1.
Analysis of Software Requirements Specification

Not all the aspects related to the analysis of SRS quality can be addressed in

the same way and with the same depth and with the same ease, because it depends

not only on internal requirements specifications, but also on external

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

55

specifications (domain information or other software artifacts) and actual user’s

satisfaction.

In fact, Correctness evaluation of SRS, i.e. the verification that the system

to be constructed is correctly described by them, needs to be supported by more

rigorous methods (Glinz, 2000), and it depends on actual user’s needs satisfaction.

Fortunately, some properties related to static (structural) and dynamic

(behavioral) aspects of SRS can be addressed without increasing the formalism

level. These properties may be grouped into three principal groups: Unambiguity,

Completeness and Consistency.

Several studies dealing with the evaluation and the achievement of quality

in NL based SRS can be found in the literature. Most of them are based on the

definition of taxonomy of common defects or checklists necessary to improve the

main quality characteristics of software requirements (unambiguity, completeness,

consistency and correctness). Effectively, checklists or taxonomy of defects are

used to perform the analysis of NL requirements aiming to detect defects and

collect metrics. We will discuss some literature that we consider to be of

particular interest to our research.

2.5.2.
Overview of the State of the Art

Quality in NL requirements can be addressed through the use of two types

of analysis techniques, or the combination of them:

 Static Analysis: Analysis of the style and content of individual

requirements or a set of requirements. This is accomplished by verification

of conformance to the representation language, and in some cases by NLP

techniques that can make explicit ambiguous terms and styles.

 Dynamic Analysis: Analysis of the behavior of a set of requirements to

identify inconsistency or incorrectness defects, such as conflicting or

overlapping requirements.

2.5.2.1.
Static Analysis of Software Requirements Specification

Requirements written using natural language are usually hard to analyze,

because natural language is by definition ambiguous. Consequently, the inherent

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

56

ambiguity of natural language makes difficult the evaluation of properties related

to completeness and consistency quality attributes.

Ambiguity analysis and checking for properties related to completeness

and consistency in requirements are usually performed by different stakeholders

(e.g., developers, testers, customers, project managers) through a tedious

procedure of reading requirements documents and looking for defects. According

to Gnesi et al. (2005), most of the defects found by inspection techniques are in

fact simple linguistic defects.

In static analysis, it is not necessary to execute the requirements for

searching defect indicators that hurt unambiguity and completeness. Static

analysis techniques may provide support that can facilitate the work of

requirements engineers for checking consistency.

Software requirements (user or system requirements) may be a set of

statements or scenarios; thus, static analysis techniques may be applied on

requirements described as statements or represented as scenarios, depending on

the level of abstraction.

2.5.2.1.1.
Static Analysis of Requirement Statements

Requirement statements are high-level descriptions of system

functionalities. Most of the existing studies about analysis of requirement

statements are addressed for detecting ambiguity indicators within individual

statements. Only a few works (Arora et al., 2015; Lucassen et al., 2015) were

proposed for searching defect indicators that contributes to completeness (mainly,

conformance to requirements templates).

Wilson et al. (1997) examine the quality evaluation of NL software

requirements. This approach defined a quality model composed of quality

attributes and quality indicators, and develops an automatic tool called Automated

Requirement Measurement (ARM) to perform the analysis against the quality

model aiming to detect defects and collect metrics by searching the SRS

document for words or phrases that have been identified as quality indicators, e.g.

weak phrases. The quality model is composed of desirable characteristics for

requirements specifications (Complete, Consistent, Correct, Modifiable, Ranked,

Traceable, Unambiguous and Verifiable); although most of these quality attributes

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

57

are subjective, there are aspects that can be measured and are indicators of quality

attributes.

Based on the analysis of a set of requirements specification documents of

NASA projects, nine categories of quality indicators were established. These

categories are related to the evaluation of individual specification statements and

entire requirements documents. Individual indicators were identified by finding

frequently used words, phrases, and structures of the selected documents that

were related to quality attributes and could be easily identified and counted by

computer programs. These individual indicators were grouped according to their

indicative characteristics.

Table 52 (Appendix 2) shows the main categories of indicators (or

properties) that hurt Unambiguity and, for each of them, a sub-set of indicators

detected by the ARM tool.

Gnesi et al. (2005) define a quality model for Natural Language

requirements specifications, composed of the three target qualities to be achieved

(Expressiveness, Consistency and Completeness). They concentrate on

Expressiveness-related issues, leaving consistency and completeness problems for

further studies. It includes those quality characteristics dealing with the

understanding of the meaning of the requirements by humans. Linguistic

techniques were used to address the issues related to the Expressiveness because

the lexical and syntactical levels provide means enough to obtain effective results.

Expressiveness quality model is composed of three quality characteristics

(Unambiguity, Specification Completion and Understandability) to be evaluated

by means of indicators. We understand that these three quality characteristics are

related to Unambiguity main quality. Indicators are linguistic components of the

requirements directly detectable and measurable on the requirements document

(See Table 53 in Appendix 2) that hurt Unambiguity.

In this approach the Quality Analyzer for Requirements Specifications

(QuARS) tool performs a lexical analysis (morphological analysis) of the

requirements document to evaluate properties that hurt Unambiguity. Vagueness,

Optionality, Subjectivity and Readability defects are detected based on the

occurrence of special terms in the requirements or the number of elements in the

sentences. To point out the other indicators, it performs a syntactical analysis

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

58

because the knowledge of the syntactical structure of the sentences is required to

detect an Implicitly, Weakness, and Multiplicity indicators.

Tjong (2008) proposes an approach for Avoiding Ambiguity in

Requirements Specifications, which provides a set of guideline rules and an

inspection checklist for writing less ambiguous requirements. The guideline rules

and checklist were implemented in an experimental lexical analyzer tool called

SREE. During the inspection of the NL Requirements, it notifies the user about

the potential ambiguity in the document, leaving space for the user to act upon

and disambiguate a truly ambiguous statement.

The SREE is based on an Ambiguity Indicator Corpus (AIC), which

contains the corpus of indicators of potentially ambiguous keywords, key phrases,

and symbols. Although it may not be possible to have an AIC that contains an

indicator of every possible potential ambiguity due to the richness of NL, SREE

allows its user to add new indicators to its AIC. There are two categories of AICs

in SREE, the Original Indicator Corpus (OIC) and the Customized Indicator

Corpus (CIC). The OIC contains ten categories of ambiguity indicators (corpi),

each in a separate file and each named appropriately for the nature of the potential

ambiguities indicated by its contents: Continuance, Coordinator, Directive,

Incomplete, Optional, Pronoun, Plural, Quantifier, Vague, and Weak. Each of

these corpi has its own list of indicators. SREE automatically loads these corpi

into the AIC each time a user starts up SREE.

Table 54 (Appendix 2) shows some of these indicators of these corpi,

organized as properties that hurt Unambiguity.

In essence, SREE is a lexical analyzer. When SREE finds a word in its input

matching one of the indicators in its AIC, then SREE notifies its user by printing

out a message describing the kind of potential ambiguity suffered by the word.

Femmer et al. (2014) study the application of light-weight static analyses to

make instant checks on natural language requirements and detect bad smells.

Based on the ISO/IEC/IEEE 29148 standard (ISO, 2011), they derive a set of 8

smells that indicate potential issues in requirements specifications: ambiguous

adverbs and adjectives, vague pronouns, subjective language, comparative

phrases, and so on (See Table 55 in Appendix 2).

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

59

The authors implemented a prototype tool for detecting patterns that are

signs of potential quality defects in requirements by using NLP techniques, such

as, part-of-speech tagging, morphological analysis, and customized dictionaries.

However, the granularity of the smells identified by the tool is limited to

individual sentences, disregarding duplicate functionality among documents.

Arora et al. (2015) present an automated and tool-supported approach for

checking conformance to requirements templates (conform to the templates of

Rupp’s (Pohl and Rupp, 2011) and EARS (Mavin et al., 2009). The approach

builds on a mature Natural Language Processing technique, known as text

chunking. In this context, the approach builds an NLP pipeline for text chunking.

To instantiate the pipeline, one needs to choose, for each step in the pipeline, a

specific implementation from the set of existing alternative implementations.

In addition to checking template conformance, they use NLP for detecting

and warning about several potentially problematic constructs, also called

requirements smells (Femmer et al., 2014), that may be signs of vagueness or

ambiguity in requirements statements. Table 56 (Appendix 2) lists and

exemplifies several constructs that can be detected automatically.

Lucassen et al. (2015) propose a Quality User Story Framework with 14

different criteria (See Table 57 in Appendix 2) to assess the quality of user stories

(conform to the format of Cohn, 2004). Furthermore, the researchers developed a

conceptual model to improve the quality of raw user stories by exploring defects

and deviations in user stories. They developed the Automatic Quality User Story

Artisan (AQUSA) tool on a NLP technique, which chunks the text and exposes

defects and deviations from good practice in user stories. Unlike most NLP tools

for RE, and in line with Berry’s notion of a dumb tool (Berry et al., 2012); the tool

detects some defects with close to 100% recall and high precision; this is

necessary to avoid that a human requirements engineer has to double check the

entire requirements document for missed defects. Consequently, AQUSA can

support only certain syntactical and pragmatic criteria in an effective manner.

2.5.2.1.2.
Static Analysis of Scenarios

Scenarios are described by a set of more detailed statements of the

functionality to be performed. Usually, scenarios are written using natural

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

60

language. In our work, scenario and use case descriptions are considered

synonymous because they are described by similar components.

Most of the existing approaches for scenario-based representations analysis

are focused on checking of properties related to completeness, i.e., checking the

conformance to scenario templates or guidelines and the coherence among

scenario components (e.g. actors, pre-conditions, main flow descriptions,

alternatives or extensions).

Only a few works (Leite et al., 2000; Anda and Sjoberg, 2002; Sinha et al.,

2010, Liu, 2015) focused on checking some properties from the relationships

among different scenarios. In these approaches, related scenarios are explicitly

referenced within statements described in scenario descriptions.

Anda and Sjoberg (2002) develop a taxonomy of defects in use case

diagrams and use case descriptions (conform to the template of Cockburn, 2001)

considering different stakeholders. The defects are divided into omissions,

incorrect facts, inconsistencies, ambiguities and extraneous information. They

proposed a checklist-based inspection technique for detecting such defects in: (1)

actors and use cases of use case diagrams; and (2) flow of events, variations,

relationships between use cases, triggers, pre-conditions and post-conditions of

use case descriptions. Table 58 (Appendix 2) shows the defects detected by the

inspection technique.

Leite et al. (2005) present a strategy for scenario inspections to be

performed by requirements engineers as a verification process before validation

with clients, and they show how inspections help software developers to better

manage the production of scenarios. This strategy was designed to be integrated

with a specific scenario construction process (Leite et al., 2000) and was applied

to several case studies. The data collected regarding the types of problems support

their claim that scenario inspections do improve scenario quality.

Table 59 (Appendix 2) shows a checklist with verification heuristics for

looking for discrepancies, errors and omissions (DEOs) in scenarios and their

relationships with other scenarios and the symbols of the Language Extended

Lexicon (LEL). The LEL (Leite et al., 2000) registers symbols (words or phrases)

that are peculiar to the application domain. The types of symbols are: Subject,

Object, Verb and State. Most of the heuristics for checking may be automated by

intelligent editors and verification agents.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

61

Phalp et al. (2007) describe a Use Case Description Quality Checklist that

acts as a check on the quality of the written description for detecting defects in use

case descriptions. They proposed a set of heuristics (7 Cs of Communicability)

that organizes the ideas, comments and suggestions of related work into categories

relevant for improving the communicability of use case descriptions, and

consequently producing a coherent set of desirable use case qualities. Their results

of one experiment indicate that when a checklist is used in inspections it is mostly

errors in syntax that will be discovered because they are easier to find than

semantic ones.

The 7 Cs quality model is proposed as a set of heuristics to evaluate internal

elements of use case descriptions (See Table 60 in Appendix 2).

Ciemniewska and Jurkiewicz (2007) developed a method for detecting

requirements defects in an automatic way using simple heuristics and NLP. This

thesis focuses on requirements in a form of use cases, as they consist of simple

structure sentences, which are easy to analyze with available Natural Language

Processing tools. Defects are organized in three levels: at the level of

specifications, use cases, and steps. The level of specifications considers the

behavior duplication. The level of use cases considers use cases very short or

long, or complex extensions (alternative flows), among others. The level of steps

considers complex syntactic structures, or omission of actors, among others.

Heuristics detect defects by counting sentences, searching keywords or terms

stored in dictionaries. NLP tool is used for searching verbs, subjects and objects in

sentences. Table 61 (Appendix 2) shows the defects detected by the automated

method.

Sinha et al. (2010) present a tool-supported approach for inspection (during

edit time) of use case models (conform to a use case description metamodel), in

conjunction with models from associated use cases, and reports on problems

found. Text2Test tool detects problems related to style and content of use

cases performing a linguistic analysis. Domain specific knowledge is needed to

introduce semantic information to the analysis, assigning classification confidence

to the concepts and verbs (type of action) described in use case sentences.

Tex2Test runs a set of checks for looking for defects in use case models;

however, not every condition of interest (check) for a use case can evaluated

automatically, but the set of interesting conditions that can be evaluated

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

62

automatically is quite large (if not open-ended). Some examples of these

conditions are shown in Table 62 (Appendix 2), and some of which are of

particular interest for test-case generation.

Liu et al. (2014) present a tool-supported approach to achieve automatic

defect detection in use case documents by leveraging on advanced parsing

techniques. In this approach, they first parse the use case document using

dependency parsing techniques; the dependency parsing provides richer syntactic

details, i.e., provides the subject, object and main verb information of a sentence

directly. The parsing results of each use case are further processed to form an

activity diagram. Lastly, they perform defect detection on the activity diagrams.

In order to find defects in a set of use cases, Liu (2015) proposed a heuristic

for finding relationships among use cases by constructing Deterministic Finite-

State Automaton (DFA) from the behavior in individual use cases and composing

them in a whole use cases graph. Traversing this graph is possible to find potential

missing scenarios or whether a certain pre-condition is satisfied by certain post-

condition.

The heuristic for finding relationships among use cases depends on an active

learning strategy; they discover missing scenarios by generating questions to

users. They base their approach on common use case defects shown in Table 63

(Appendix 2).

2.5.2.2.
Dynamic Analysis of Software Requirements Specification

In order to improve the correctness and consistency of systems described as

informal requirements (or semi-formal), it is necessary to perform an extensive

and iterative analysis, which is mostly performed manually, requiring a great

effort and taking a lot of time. Inexperienced inspectors often do not detect these

defects or only with much effort. The other option is write requirements using

formal languages, such as Petri-Nets (Murata, 1989), LTS (Keller, 1976) or CSP

(Roscoe, 1998), which will allow an automatic and rigorous analysis, which

usually reduces the effort and time to be done.

In order to evaluate dynamic aspects of requirements, it is necessary to

execute (or simulate the execution) a set of requirements for detecting defects that

can hurt properties related to consistency or correctness. The use of formal

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

63

techniques make it possible to perform a rigorous analysis and improve the

consistency and correctness of a set of requirements, i.e., the set of requirements

contains less erroneous situations such as conflicts or overlaps raised from the

complex relationships among requirements. There is an interaction (or

relationship) when two or more requirements have some effect on each other.

Many researchers have shown the importance to formalize the informal

aspects of requirements in order to benefit from automated analysis of dynamic

aspects. Usually, these approaches describe requirements as scenario

representations. Some research focused on developing formal syntax and

semantics for scenario representations, like Hsia et al. (1994) and Cheung et al.

(2006); others are focusing on developing techniques to transform scenarios into

executable representations. Therefore, these researches demonstrate that informal

or semi-formal requirements cannot be used for further automated analysis.

Due to the focus of this work is the analysis of scenarios written using

natural language, we selected related studies that focus on natural language-based

scenarios. A few of them are supported by full automatic tools.

Lee et al. (1998) propose a systematic procedure to formalize use cases, by

mapping use case descriptions into Constraint-based Modular Petri-Nets

(CMPNs), allowing the analysis of use cases. To facilitate the transformation, use

cases are described in relation to formal definition of pre and post-conditions, and

represented like Action-Condition tables. Use cases are considered as a collection

of interacting and concurrently executing units of system functionalities. Petri-Net

analysis techniques can be used to evaluate completeness and consistency related

properties in CMPNs (See Table 64 in Appendix 2). It is the unique approach that

manages the state explosion problem of Petri-Nets by dividing the CMPN into a

set of slices. However, intermediate models are created and it uses a non-standard

use case model without alternative/exception flows.

Lee et al. (2001) present an approach to analyze use cases using formal

semantics of Time Petri-Nets. Use case are used to elicit system requirements; in

order to represent the interaction between the actors and the system, scenarios are

derived from these use cases and represented as sequence diagrams. From these

sequence diagrams, Time Petri-Nets are derived to check the acquired scenarios

by indicating missing information (incompleteness) or wrong information

(inconsistency) hidden in these scenarios. The approach avoids deadlock

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

64

situations in the mapping process because sequence diagrams are constrained by

the time line. However, relationships among use cases are no considered. Table

65 (Appendix 2) shows the faults detected by a CASE support tool.

Denger et al. (2005) present an integrated approach for achieving high

quality in use cases that combines Use Case creation guidelines, Use Case

inspections, and simulation in a systematic way. They base their combined

approach on a defect classification for use cases (Table 66 in Appendix 2). This

classification enables the requirements engineer to focus the different techniques

on different types of defects. They showed that guidelines are valuable for the

prevention of structural and syntactic defects, and inspections are suitable for

detecting subtle logical defects. Simulation is integrated so that serious

consistency and correctness defects resulting from the interference between Use

Cases can be efficiently detected; for it Use Case are mapped into Statecharts

(Harel, 1987), and several statecharts can be simulated simultaneously.

Ad-hoc recommendations, guidelines and checklists are used for avoiding

defects that hurt unambiguity and completeness; simulation is used for detecting

defects that hurt consistency.

Sinnig et al. (2009) propose a syntax definition that formalizes the

sequencing of use case steps and their types; based on these syntax a formal

semantics based on Labeled Transition System (LTS) (Keller, 1976) is proposed

for use case models containing extend and include UML relationships. A use case

model is mapped to UC-LTS by generating UC-LTSs from use case descriptions

(steps and extensions), and merging the UC-LTSs representing the various

entailed use cases.

The authors developed the Use Case Analyzer tool to automatically detect

livelocks. They also propose a method for verifying refinement of use case

models, namely checking their equivalence and deterministic reduction. Most of

the checks focus on global properties of use case models, and only sequential

relationships (precedence) among use cases are considered (See Table 67 in

Appendix 2).

Zhao and Duan (2009) propose an approach to formalize use cases

semantics with Timed and Controlled Petri-Nets (TCPN). A semi-structured

natural language is proposed for use case syntax. The events in use cases can be

sequential, conditional, iteration or concurrent (parallelism). Petri-Nets are

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

65

derived mapping use case events into sub Petri-Nets and linking them. Based on

the obtained Petri-Net model, criteria to detect incompleteness, inconsistency and

incorrectness properties are described (See Table 68 in Appendix 2). This

approach evaluates properties of use cases and their associated use cases,

separately; thus, relationships among use cases are no considered.

Somé (2010) proposes an approach for formalizing textual use cases via

reactive Petri-Nets (Eshuis and Dehnert, 2003). They provided an algorithm for

the generation of a reactive Petri-Net from textual use cases described using a

formal syntax, and taking into account include and extend UML relationships and

sequencing constraints using pre/post-conditions. The constructed reactive Petri-

Net can be used for synthesis or analysis of Consistency properties defined in the

transformation are satisfied (Table 69 in Appendix 2). This approach deals with

sequential UML relationships among use cases (include and extend). However,

the language to describe use cases does not deal with communication between

concurrent use cases and other type of relationships among use cases.

2.5.3.
Analysis Approaches Compared

The studies reported in the literature for analysis of requirement

statements are focused mainly in analysis of static aspects of individual

requirement sentences in order to detect and correct ambiguity issues. The

evaluation of the different techniques were based on the following aspects: What

requirement representation is used?, What analysis technique is used?, Are

relationships among requirements considered for analysis?, Is it tool-

supported?, Does it detect unambiguity defects?, Does it detect completeness

defects?, Does it detect consistency defects?, Does it detect correctness defects?,

Is it applicable to scenario representations?. Table 4 summarizes the results in a

matrix.

Most of the reported techniques (Section 2.5.2.1.1) support the detection of

ambiguity defects based on indicators databases and NLP techniques (except

Wilson et al., 1997). Only Lucassen et al. (2015) consider the relationships

among requirements for analysis. Lucassen et al. (2015) and Arora et al. (2015)

check completeness in relation to conformance to requirements templates; Gnesi

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

66

et al. (2005) and Lucassen et al. (2015) supports the consistency checks by

making explicit related requirements.

Most of these techniques are applicable to analysis of requirements

described as scenario representations, since analysis of ambiguity can be applied

to individual scenario elements or steps.
Table 4 – Comparing Requirement Statements Static Analysis Techniques

Most of the studies reported in the literature for analysis of scenarios are

focused mainly in analysis of static aspects of scenario elements. The evaluation

of the different static analysis techniques were based on the following aspects:

What scenario representation is used?, Is there a syntax for scenario?, What

analysis technique is used?, Are relationships among internal components of

scenarios considered (e.g. actors, steps, extensions) for analysis?, Are

relationships among scenarios considered for analysis?, Is it tool-supported?,

Does it detect unambiguity defects?, Does it detect completeness defects?, Does

it detect consistency defects?, Does it detect correctness defects?. Table 5

summarizes the results in a matrix.

Most of the reported techniques support the detection of ambiguity

indicators and completeness defects by applying inspection checklists;

Ciemniewska and Jurkiewicz (2007), Sinha et al. (2010) and Liu et al. (2014) also

take advantage of NLP techniques. Phalp et al. (2007) does not consider the

relationships among scenarios for analysis. Only Ciemniewska and Jurkiewicz

(2007), Sinha et al. (2010) and Liu et al. (2014) present tool-supported techniques.

Most of these techniques check completeness in relation to conformance to

scenario templates. Leite et al. (2000) provides heuristics for consistency

checking; others support partially the consistency checking, e.g., Ciemniewska

 Wilson et
al., 1997

Gnesi et al.,
2005

Tjong, 2008 Femmer et al.,
2014

Arora et al.,
2015

Lucassen et al.,
2015

Requirement
Representation

No No No No Rupp’s;
EARS;

User Story;

Analysis Technique Dictionary
of

Indicators;

Dictionary of
Indicators;

NLP;

Dictionary of
Indicators;

NLP;

Dictionary of
Indicators;

NLP;

Dictionary of
Indicators;

NLP;

Dictionary of
Indicators;

NLP;
Relationships Among
Requirements

No No No No No Yes

Tool-supported Yes Yes Yes Yes Yes Yes
Unambiguity Yes Yes Yes Yes Yes Yes
Completeness No No Partial Partial Yes Yes
Consistency No Partial No No No Partial
Correctness No No No No No No
Applicable to Scenario Yes Yes Yes Yes Yes Partial

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

67

and Jurkiewicz (2007) provide heuristics for automatic detection of use case

duplication. Only Leite et al. (2000) checks the consistency between scenarios and

domain information (LEL).

Most of these techniques do not provide support for analysis of dynamic

aspects of scenarios, because they do not provide execution semantics or insights

for mapping into executable models.
Table 5 - Comparing Scenarios Static Analysis Techniques

Most of the studies reported in the literature for analysis of dynamic

aspects of scenarios are focused on translating natural language-based scenarios

into formal representations, and take advantage of execution semantics of formal

languages to simulate the behavior of set of scenarios and detect defects from

possible interactions. The evaluation of the different dynamic analysis techniques

were based on the following aspects: What scenario representation is used?, Is

there a syntax for scenario?, What analysis technique is used?, Are

relationships among internal components of scenarios considered (e.g. actors,

steps, extensions)?, Are relationships among scenarios considered for analysis?,

Are non-explicit relationships among scenarios considered for analysis?, Are

related scenarios integrated for whole analysis?, Is the state explosion issue of

reachability analysis managed?, Is it tool-supported?, Does it detect

unambiguity defects?, Does it detect completeness defects?, Does it detect

consistency defects?, Does it detect correctness defects?. Table 6 summarizes the

results in a matrix.

Most of the reported techniques support partially the detection of

unambiguity and completeness defects by applying inspection checklists; these

 Leite et al.,
2000

Anda and
Sjoberg, 2002

Ciemniewska and
Jurkiewicz, 2007

Phalp et al.,
2007

Sinha et al.,
2010

Liu et al.,
2014

Scenario Representation Scenario Use Case
Diagram;
Use Case;

Use Case Use Case;

Use Case
diagram;
Use Case;

Use Case;

Syntax for Scenarios Yes Partial Partial Yes Yes Partial
Analysis Technique Checklist;

Heuristics
Checklist Heuristics;

NLP;
Checklist Checklist;

NLP;
Checklist;

NLP;
Relationships Among
Internal Components

Yes Partial Yes Partial Yes Partial

Relationships among
Scenarios

Yes Partial Partial No Partial Partial

Tool-supported Manual Manual Yes Manual Yes Yes
Unambiguity Partial Partial Yes Partial Partial Partial
Completeness Yes Yes Yes Yes Yes Partial
Consistency Yes Partial Partial Partial Partial Partial
Correctness Partial Partial Partial Partial Partial No

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

68

checklists mainly evaluate the conformance to previous syntax defined. Lee et al.

(2001), and Zhao and Duan (2009) do not consider the relationships among

scenarios for analysis. Only Lee et al. (1998) take into account non-explicit

relationships among scenarios for analysis. Most of the techniques that consider

relationships among scenarios integrate the related scenarios for a whole analysis.

Lee et al. (1998) and Glinz (2000) do not present tools to support the analysis.

Most of these techniques are based on mapping to formal representations to

take advantage of execution semantics, such as Petri-Nets, LTS or Statecharts;

from these representations, a reachability graph is generated for analysis of the

behavior of a set of scenarios and their relationships.

Most of these techniques do not take into account the state explosion issue

of the generated reachability graph. Only Lee et al. (1998) manages the state

explosion issue of reachability analysis by the use of slices strategy.

Petri-Net based techniques represent the interaction among concurrent

scenarios in a more intuitive way, by fusing places or transitions to show the

communication among concurrent scenarios.

Most of these techniques check consistency and correctness using

equivalent formal representations, and they rarely map the results of the analysis

to scenarios or the scenario relationships.
Table 6 - Comparing Requirement Statements Dynamic Analysis Techniques

 Lee et al., 1998 Lee et al.,
2001

Denger et
al., 2005

Zhao and
Duan, 2009

Sinnig et
al., 2009

Somé,
2010

Scenario Representation Use Case;
Action-Condition
table;

Use case;
Sequence
Diagram;

Use Case; Use Case; Use Case;
Use Case
diagram;

Use Case;
Use Case
diagram;

Syntax for Scenarios No Partial Yes Yes Yes Yes
Analysis Technique Constraints-based

Modular Petri-
Net;

Time Petri-
Nets;

Checklist;
Statechart;

Timed and
Controlled
Petri-Nets;

LTS; Reactive
Petri-Net;

Relationships Among
Internal Components

No Yes Partial Partial Yes No

Relationships among
Scenarios

Yes No Partial No Yes Partial

Non-explicit
Relationships among
Scenarios

Yes No No No No No

Integration of Related
Scenarios for Whole
Analysis

Yes No Partial No Partial No

Tool-supported No Partial Partial Partial Partial Yes
State Explosion
Management

Slices No No No No No

Unambiguity Partial Partial Partial Partial Partial Partial
Completeness Yes Partial Partial Partial Partial Partial
Consistency Yes Partial Partial Partial Partial Partial
Correctness Yes Partial Partial Partial Partial Partial

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

69

2.5.4.
Research Gaps

Due to the focus of our research is the analysis of requirements described

as scenario representations, we have identified the following gaps in scenario-

based analysis techniques:

 We have not seen an explicit understanding of how the main quality

characteristics are related to each one, i.e. they have positive and negative

contributions among them. Only the requirement statements analysis

works decomposed the main qualities (Unambiguity) in related properties

(Categories of indicators) and modeled their impacts.

 Most of the techniques for static or dynamic analysis of scenarios do not

take into consideration the results achieved by requirement statements

analysis techniques in finding ambiguity indicators. Mainly, the works of

Gnesi et al. (2005), Tjong (2008) and Lucassen et al. (2015) demonstrate

that NLP techniques may be effective in detecting ambiguity, in some

cases with 100% recall and high precision.

 Most of the analysis techniques are applied on scenarios written using

formal syntax rules, or based on purely textual descriptions (conform to

the template of Cockburn, 2001). Therefore, there is a lack of systematic

procedures on how to represent scenarios. In case of techniques based on

Cockburn (2001), intermediate models are created for mapping into formal

representations.

 Only few of the works, like Somé (2010) apply consistency rules for

verifying the preservation of the consistency between scenarios and their

equivalent formal representations.

 Scenarios are rarely independent; they interact, in some cases non-

explicitly. Most of the existing proposals only consider sequential

relationships (e.g. extend or include UML relationships) among scenarios;

they do not propose constructs or heuristics to identify non-explicit

relationships. Non-explicit relationships can hide non-sequential

interactions (indistinct sequential order, concurrency or parallelism)

among scenarios.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

70

 Most of the existing techniques do not describe systematic procedures on

how integrate the equivalent formal representations of a set of related

scenarios (they interact) into a whole representation, in order to evaluate

the behavior and detect defects from the relationships in a set of scenarios.

Only Lee et al. (1998) present a formal approach to integrate formal use

cases with sequential and non-sequential (concurrent) relationships. Sinnig

et al. (2009) and Somé (2010) give some details for the integration of

sequentially related scenarios.

 The state explosion issue is a big problem when reachability graphs are

generated for analysis of complex systems. Only Lee et al. (1998) propose

a strategy to lead with this problem.

 When equivalent formal representation are evaluated using formal analysis

strategies, and errors are found, the results of the analysis must be

described in a comprehensive way, and mapped to defects within scenarios

or the scenarios’ relationships. None of the existing approaches return a

feedback in a comprehensive way and tracing the errors from formal

representations to scenarios.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

71

3
A Quality Model for Scenarios

This section begins with a general introduction of Software Requirements

Specification (SRS) quality and the importance of scenario-based SRS (Section

3.1). Next, In Section 3.2 we employ the non-functional requirements (NFR)

approach (Chung et al., 2000) to model the relationships between unambiguity,

completeness, consistency and correctness qualities. This section also shows how

a quality property can be evaluated by searching defect indicators. Finally,

Section 3.3 discusses the benefits of the proposed Quality Model for Scenarios.

3.1.
Quality in Scenario-based SRS

Many problems and high-risk issues that arise during the software

development process are related with deficiencies at RE activities. Assessing that

SRS satisfices (relative satisfaction) the necessary quality is crucial to the success

of any software development project, since the SRS is the anchor for software

development. However, assessing the quality of a SRS is not a simple process,

mainly, because a system must often support multiple stakeholders with different

viewpoints and needs, which may be contradictory.

Nowadays, Scenario-based representations are frequently used in RE for

requirements specification. A scenario-based SRS has the potential to influence

positively the SD process, requirements engineers need to pay special attention to

its quality, in special with respect to unambiguity, completeness, consistency and

correctness since they will anchor further development.

There are several different templates or syntax for writing scenarios, and

most of common components used to detail scenarios are:

 Title/Name: Name that identifies the scenario;

 Goal: Purpose of the scenario;

 Pre-condition: System state before the scenario can start;

 Post-condition: System state after the scenario is performed;

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

72

 Actors: Persons, device or organization structures (active entities) that

have a role in the scenario;

 Episodes/Main Flow: Steps to achieve the goal of the scenario;

 Exceptions/Alternative Flows: Exceptions from the course of events;

Other components that might be useful to detail in scenario descriptions are:

Resources (Leite et al., 2000; Sinha et al., 2010) and Context (Leite et al., 2000).

As stated before (Chapter 2), scenarios are usually written in natural

language, however, natural language is by definition ambiguous leading to

incomplete, inconsistent and incorrect SRS. Ambiguity occurs when two or more

users have different interpretations of the same requirement. Incomplete

requirements occur because the world is complex; as such, users or clients are not

able to identify and develop all relevant requirements. Inconsistent requirements

occur when two or more users have conflicting requirements, or the captured

requirements are internally inconsistent when one or more requirements override

others. Incorrect requirements may occur when the acquired requirements do not

accurately reflect the facts, or erroneous predicts about future states.

Numerous techniques have been developed to deal with these quality

problems in SRS and each one with its own context of applicability. However,

most SRS still do not meet these qualities. According to Glinz (2000), it is not

only a problem of applying the right methods and processes for SRS until they

yield the desired qualities; the qualities themselves are part of the problem.

So, in order to understand these qualities it is necessary to model the

relationships between unambiguity, completeness, consistency and correctness.

3.2.
Modeling Correctness as Non-functional Requirements

Our proposal is one of the first to represent unambiguity, completeness,

consistency and correctness as non-functional requirements based on NFR

framework (Chung et al., 2000). Moreover, our contribution also exposes the links

and impacts between the properties related to the main NFRs. We introduce a

novel perception of correctness and its complex relationships with unambiguity,

completeness and consistency describing it as a quality that should be satisficed by

contributions of related qualities or properties.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

73

Based on the literature, we have developed a Soft-goal Interdependency

Graph (SIG) for SRS Correctness (Figure 15), which will be the base for

cataloged information and will be detailed by a series of decomposition or

contribution interdependencies. In order to elaborate the SIG to achieve

Correctness, we defined a set of two steps, which are detailed below.

Figure 15 – Initial SIG of SRS Correctness.

3.2.1.
Defining the Main NFRs

In the NFR Approach, unambiguity, completeness, consistency and

correctness are non-functional requirements that need to be satisficed (relative

satisfaction) by the specifications.

In our work, it is assumed that: (1) correctness is the most important

quality; and (2) there is an important causal relationship between unambiguity,

completeness, consistency and correctness of SRS. Glinz (2000) uses the term

adequacy instead of correctness, and focuses on adequacy as the most important

quality.

Zowghi and Gervasi (2003) argue as increasing the completeness of a SRS

can decrease its consistency and hence affect the correctness of the final product.

Conversely, improving the consistency of the SRS can reduce the completeness,

thereby again diminishing correctness. It is frequently the case that in an attempt

to maintain consistency within the requirements we remove one or more

requirements from the specification and fail to preserve its completeness.

Conversely, when we add new requirements to the specification to make it more

complete, it is possible to introduce inconsistency in the specification (Zowghi

and Gervasi, 2003).

In the context of scenario-based SRS, unambiguity concerns a sentence

(scenario consists of many sentences); completeness concerns a single scenario

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

74

and its internal components, and a set of scenarios and their relationships;

consistency concerns a set of scenarios and their relationships.

3.2.1.1.
Unambiguity

A specification is unambiguous if and only if, every requirement stated

therein has only one interpretation (IEEE, 1998). Although, unambiguity is very

difficult to achieve and evaluate because most of the related indicators are

subjective; there are defect indicators that can be found. These indicators provide

evidence against the existence of unambiguity. These indicators can be grouped

and categorized in properties that contribute negatively to Unambiguity:

Vagueness, Subjectiveness, Optionality, Weakness, Multiplicity, Implicitly and

Quantifiability. Other properties that contribute positively to unambiguity are:

Readabiity and Minimality.

Due to inherent ambiguity in natural language-based scenario specifications;

NLP techniques can be useful to address several problems that impacts negatively

to unambiguity by evaluating linguistic aspects of internal scenario components

(Title, Goal, Episodes/Steps, Conditions, Exceptions, and so on). Most of these

problems are defects that contribute to unambiguity properties, and they can be

identified by performing a lexical or syntactical analysis.

Lexical analysis can be performed to search defect indicators that contribute

to Vagueness, Subjectiveness, Optionality, Multiplicity, Quantifiability,

Readabiity and Minimality. This analysis is based on the occurrence of special

terms (words or phrases) in the sentences or the number of elements in the

sentences (Gnesi et al., 2005).

Syntactical analysis is necessary to detect defects related to Weakness and

Implicitly properties; however, lexical parsers can be also used to search

ambiguity indicators, e.g. weak phrases (Wilson et al., 1998; Tjong, 2008).

Based on results achieved by requirement statements analysis techniques

(Wilson et al., 1998; Gnesi et al., 2005; Tjong, 2008), we organized the set of

properties that contribute to unambiguity in NL-based scenarios, which can be

evaluated by following a checklist with verification heuristics to search defect

indicators. The indicators of these properties are collected into dictionaries that

contain frequently used words or phrases characterizing defects, and evaluated by

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

75

metrics which can be easily identified and counted by computer programs (See

Table 7).
Table 7 – Properties Related to Unambiguity.

Property Description Heuristic Indicator
Vagueness The sentence contains words

or phrases having a non-
uniquely quantifiable
meaning (Gnesi et al., 2005).

Check that a sentence
does not contain vague
terms

A sentence contains:
adaptability, additionally,
adequate, aggregate,
also, ancillary, arbitrary,
…

Subjectiveness The sentence contains words
or phrases expressing
personal opinions or feeling
(Gnesi et al., 2005).

Check that a sentence
does not contain
subjective words

A sentence contains:
similar, better, similarly,
worse, having in mind,
take into account, take
into consideration, as
possible.

Optionality The sentence contains words
that give the developer
latitude in satisfying the
specification statements that
contain them (Wilson et al.,
1997).

Check that a sentence
does not contain optional
words

A sentence contains: as
desired, at last, either,
eventually, if appropriate,
...

Weakness The sentence contains clauses
that are apt to cause
uncertainty and leave room
for multiple interpretations
(Wilson et al., 1997).

Check that a sentence
does not contain weak
terms

A sentence contains: can,
could, may, might, ought
to, preferred, should, will,
would.

Multiplicity The sentence has more than
one main verb, subject or
object.

Check that a sentence
does not contain
conjunction or disjunction
words

A sentence contains: and,
or, and/or

Implicitly The sentence does not specify
the subject or object by means
of its specific name but uses
pronoun or other indirect
reference (Gnesi et al., 2005).

Check that a sentence
does not contain implicit
words

A sentence contains:
anyone, anybody,
anything, everyone, he,
her, hers, herself, ...

Quantifiability Terms used for quantification
can lead to ambiguity if not
used properly (Arora et al.,
2015).

Check that a sentence
does not contain
quantification words

A sentence contains: all,
any, few, little, many,
much, several, some.

Readabiity It measures how easily an
adult can read and understand
the sentence or Document
(Wilson et al., 1997).

This metric is the
Coleman-Liau Formula
readability metric:
(5.89*chars/words-
0.3*sentences/(100*word
s)-15.8]).

The reference value of
this formula for an easy-
to-read technical
document is 27.60, if it is
< 17.10 and > 55.80 the
document is difficult-to-
read.

Minimality A sentence contains nothing
more than basic attributes
(Lucassen et al., 2015).

Check that a sentence
does not contain
additional information

A sentence contains a Text
after a: dot, hyphen,
semicolon or other
punctuation mark.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

76

3.2.1.2.
Completeness

A specification is complete if all relevant requirements are present and each

requirement is fully developed (Boehm, 1979). Incomplete requirements occur

because the world is complex; as such, users or clients are not able to fully

understand the impact of present decisions.

Although, completeness is very difficult to define and evaluate because it

also depends on external aspects, and violations are hard to detect; there are

internal aspects that can be measured. In Leite et al. (2000), the evaluation of

completeness in scenario-based specifications is done following a checklist with

verification heuristics to detect violations of properties in internal elements of

scenarios and their relationships.

Based on Leite et al. (2000), we re-organized the properties that contribute

positively to completeness. We understand that a fully developed SRS presents

properties related to internal aspects of scenarios (intra-scenario) and their

relationships (inter-scenario). The intra-scenario properties include: Atomicity,

Simplicity, Uniformity, Usefulness and Conceptually Soundness. The inter-

scenario properties include: Integrity, Coherency and Uniqueness. Other

important property related to completeness is Feasibility. For each property, we

defined verification heuristics for searching defect indicators that hurt the

property.

Table 8, Table 9, Table 10 and Table 11 show the properties that contribute

to completeness and heuristics to search common defect indicators that contribute

negatively to them. These verification heuristics are driven by syntax checks and

by cross-referencing the related scenarios. Some of these heuristics were learned

or reported by related work during their experience with scenarios or use cases

analysis.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

77

Table 8 – Intra-scenario Properties Related to Completeness (Continued on Table
9).

Property Description Heuristic Indicator
1. Check that Title defines
exactly one situation;

and, or, and/or;

2. Check that Goal satisfies
exactly one purpose;

and, or, and/or;

Atomicity A scenario
expresses exactly
one situation
(Adapted from
Lucassen et al.,
2015).

3. Check that Title contains a
verb in infinitive (base) form and
an object;

Missing Action-Verb in Title;
Missing Object in Title;

1. Check that each
Episode/Exception consists of a
subject, a verb, and optionally,
an object and a prepositional
phrase (It is not a complex
sentence, Ciemniewska and
Jurkiewicz, 2007);

Episode/Exception contains
more than one Action-Verb;
Episode/Exception contains
more than one Subject;
Missing Subject;
Missing Object;

2. Check that Episode/Exception
is described from user point of
view, i.e., the present simple
tense and active form of a verb
should be used (Ciemniewska
and Jurkiewicz, 2007);

The Action-verb is not in the
third form;

3. Check that Title does not
contain extra unnecessary
information (Adapter from Phalp
et al., 2007).

Title contains text between
brackets (e.g. (...), {...}),
URLs, HTML

4. Check that Episode
coincidence only takes place in
different situations;

Duplicated Episode Id or
sentence;

5. Check that nested IF
statement is not used in a
Conditional Episode, i.e., it can
confuse the user and be difficult
to read (Ciemniewska and
Jurkiewicz, 2007);

More than one Episode inside
a nested IF;

Simplicity A scenario should
be as readable as
possible;

6. Check that Exception is
handed by a simple action, i.e., if
the interruption causes the
execution of a sequence of
sentences, then this sequence
should be extracted to a separate
scenario (Ciemniewska and
Jurkiewicz, 2007);

More than one Sentence inside
a Exception Solution;

Uniformity Each scenario
element is
constructed using
defined scenario
model.

1. Check the completeness of
each scenario element (Leite et
al., 2000);

Missing Title
Missing Goal
Missing Actors
Missing Resources
Context does not contain its
relevant sub-components
Missing Episodes
Episode does not contain its
relevant parts (Id, Sentence)
Exception does not contain its
relevant parts (Id, Cause,
Solution)

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

78

Table 9 – Intra-scenario Properties Related to Completeness.
Property Description Heuristic Indicator

1. Check that every Actor
participates in at least one
episode;

Actor does not participate in the
situation;

2. Check that every Actor
mentioned in episodes is
included in the Actor element;

Missing Actor in Actors
element;

3. Check that every Resource is
used in at least one episode;

Resource that is not used in the
situation;

4. Check that every Resource
mentioned in episodes is
included in the Resource
element;

Missing Resource in Resources
element;

5. Ensure that step numbering
between the main flow and
alternative/exception flow are
consistent (Liu et al., 2015);

Branching Episode of an
exception is missing;

Usefulness A scenario does
not contain
superfluous
information, i.e.,
there should be
consistency
among scenario
elements.
(Adapted from
Anda et al., 2009).

6. Check the existence of more
than two and less to 10 episodes
per scenario (Leite et al., 2000;
Ciemniewska and Jurkiewicz,
2007);

Number of episodes in each
scenario is less than 3 or more than
9;

1. Check that the Title describes
the Goal;

The corresponding verbs and
objects appearing in the two
compared sentences are not the
same

2. Ensure that the set of Episodes
satisfies the Goal and is within
the Context;
3. Ensure that actions presents in
the Pre-conditions are already
performed;

Difficult to be measured by an
automatic tool;

4. Ensure that Episodes contain
only action to be performed;

Missing Action-Verb in episode
sentences;

5. Ensure that Episode condition
contains Linking-Verbs;

Missing Linking-Verb in episode
conditions;

6. Ensure that Pre-conditions
contain State-Verbs;

Missing State-Verb in Pre-
conditions;

7. Ensure that Post-conditions
contain State-Verbs;

Missing State-Verb in Post-
conditions;

8. Ensure that Exception solution
contains only action to be
performed;

Missing Action-Verb in
exception solution;

Conceptually
Soundness

Internal scenario
elements are
semantically
coherent, i.e.,
scenario elements
satisfy the
scenario goal
(Leite et al.,
2000).

9. Ensure that Exception cause
contains Linking-Verbs or State-
Verbs;

Missing Linking-Verb or State-
Verb in exception causes;

In Table 10, Integrity and Coherency properties are evaluated checking the

main scenario against the related scenarios to it. Uniqueness properties are

evaluated checking the main scenario against the other scenarios (related or not).

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

79

Table 10 – Inter-scenario Properties Related to Completeness.
Property Description Heuristic Indicator

1. Check that every included
scenario exists within the set of
scenarios (Leite et al., 2000);

Pre-condition identified as
related scenario does not exist
within the set of scenarios;
Post-condition identified as
related scenario does not exist
within the set of scenarios;
Episode sentence identified as
related scenario does not exist
within the set of scenarios;
Exception solution identified
as related scenario does not
exist within the set of
scenarios;
Constraint identified as related
scenario does not exist within
the set of scenarios;

2. Check that every Exception is
treated by a scenario (Leite et al.,
2000);

Complex Exception Solution
must be treated by a scenario;

Integrity Whenever a
scenario includes
an explicit
relationship on
another scenario,
the related scenario
should exist as
another scenario
within the set of
scenarios.

3. Check that a Pre-condition (not
described as another scenario) of a
scenario is satisfied by a Post-
condition of other scenario, i.e., it
is possible to infer relationships
from pre-condition/post-condition
(Leite et al., 2000);

Missing pre-condition/post-
condition;

1. Check coherence between the
related scenario Pre-conditions and
the main scenario Pre-conditions;

Difficult to be measured by an
automatic tool;

2. Check that Geographical and
Temporal location of the related
scenarios are equal or more
restricted than those of the main
scenario (Leite et al., 2000);

Related scenario Geographical
location is not in the set of
Geographical locations of root
scenario;
Related scenario Temporal
location is not in the set of
Temporal locations of root
scenario;

Coherency Internal elements
of explicitly related
scenarios should be
precise and use a
common
terminology, e.g.
pre-conditions of
sub-scenarios are
coherent with main
scenario pre-
conditions.

3. Check that every referenced
scenario does not reference the
main scenario (Adapted from
Sinnig et al., 2009);

Circular inclusion between
two scenarios;

1. Check that the Title of a
scenario is not already included in
another scenario;

Title coincidence between two
scenarios;

2. Check that the Goal of a
scenario is not already included in
another scenario;

Goal coincidence between two
scenarios;

3. Check that the Context Pre-
condition of a scenario is not
already included in another
scenario;

Pre-condition coincidence
between two scenarios;

4. Check that the set of Episodes of
a scenario is not already included
in another scenario;

Episodes coincidence between
two scenarios;

Uniqueness A scenario is
unique when no
other scenario is
the same or too
similar, i.e.,
duplicates are
avoided because
they are source of
inconsistencies
(Adapted from
Lucassen et al.,
2015);

5. Check the similarity of the
scenario with other scenarios using
syntactic analysis;

Titles share the same Action-
Verb and the direct Object;

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

80

Table 11 – Feasibility Property Related to Completeness.
Property Description Heuristic Indicator

1. Check that is possible to
derive an initial system
design from the current
scenario (Adapted from
Denger et al., 2005);

There are not
relationships among
scenarios;

Feasibility It is possible to
perform each
operation described
in a scenario and
each
internal/external
condition is not
violated.

2. Check that initial system
design does not contain
isolated sub-systems;

Unreachable operations;

3.2.1.3.
Consistency

A specification is consistent when two or more requirements are not in

conflict with one another or with governing specifications and objectives (Boehm,

1979). Inconsistent requirements occur when two or more users have conflicting

requirements, or the captured requirements are internally inconsistent when one or

more requirements override others.

Evaluation of consistency with respect to external specifications is very

difficult to perform. Consistency defects are difficult to detect or only with much-

effort. However, internal aspects of consistency can be evaluated when the

behavior of a set of scenarios is simulated, and defects are identified in scenario

relationships.

One of the main strategies to ensure the consistency is the evaluation of

dynamic aspects of a SRS. This is done by first mapping scenario representations

into executable models, and performing a rigorous behavioral analysis to detect

violations (defects) of properties that contribute positively to consistency. There

exist several tools to perform rigorous analysis on executable models (e.g. Petri-

Net). These tools generate a reachability graph which contains the different states

of execution, and traverse this graph for searching defect indicators.

Table 12 shows the properties that contribute to consistency and verification

heuristics for searching defect indicators that hurt these properties. Dynamic

properties that influence the consistency are: Non-interferential, Boundedness,

Reversibility and Liveness.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

81

Table 12 –Properties Related to Consistency.
Property Description Heuristic Indicator
Non-
interferential

Every operation
that negatively
affect on others
should be
identified.

Check Non-determinism: A non-
deterministic behavior occurs when a
set of operations are simultaneously
enabled. If the reachability graph
reveals non-deterministic execution
paths, a warning is reported to
indicate wrong information (Lee et
al., 1998; Lee et al., 2001).

Simultaneously
enabled
operations;

Boundedness This property
refers to the
limited capacity
of a
communication
channel or shared
resource.

Check Overflow: An executable
model is overflowed when the
number of elements in some
communication channel or resource
exceeds a finite capacity (Zhao and
Duan, 2009).

Overflowed
resource;

Reversibility The behavior
should reach its
initial state again.

Check Reversibility: Reversibility of
an executable model guarantees that
the described behavior reaches its
initial state again. If the executable
model is not reversible, the automatic
error recovery is not possible
(Cheung et al., 2006).

There are no a
path from an
operation to the
initial state;

Liveness Every operation
can be executed in
the future.

Check Liveness: Liveness is closely
related to the complete absence of
deadlocks. An executable model is
deadlocked if no process can make
any progress, generally because each
is waiting for communication with
others (Lee et al., 1998).

Path to deadlock;
Never enabled
operations;

3.2.1.4.
Correctness

A specification is correct if, and only if, every requirement stated therein is

one that the software shall meet (IEEE, 1998). Incorrect requirements may occur

when the acquired requirements do not accurately reflect the facts, or erroneous

predicts about future states.

Correctness is the main requirements quality, and it is difficult to evaluate

and achieve. Therefore, having an unambiguous, complete and consistent set of

scenarios contributes positively to more correct SRS.

3.2.2.
Modeling the SIG

In order to evaluate unambiguity, completeness, consistency and

consequently correctness, we apply the NFR qualitative reasoning approach

(Chung et al., 2000); the goal here is to achieve good correctness in scenario-

based SRS.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

82

Figure 16 illustrates the SIG that models the SRS Correctness and how

SRS Unambiguity, Completeness and Consistency impact positively (help) to

Correctness. We assume that a SRS is more correct, if it is perceived as

unambiguous, complete and consistent with respect to real user’s needs.

Interdependency between SRS Consistency and Completeness impacts negatively

(hurt) on both (Zowghi and Gervasi, 2003).

Properties that contribute negatively to Unambiguity are modeled using

HURT links – in Vagueness, Subjectiveness, Optionality, Weakness, Multiplicity,

Implicitly and Quantifiability. Also, properties that contribute positively to

Unambiguity are modeled using HELP links – in Readabiity and Minimality soft-

goals.

Completeness and Consistency are decomposed – using AND links – in

Internal and External soft-goals, following the lead of (Boehm, 1979) and

(Zowghi and Gervasi, 2003). Evaluating External Completeness and External

Consistency is a hard problem because it depends on external specifications,

external domain models and user’s needs satisfaction.

Properties that contribute positively to Internal Completeness are modeled

using HELP links – in Atomicity, Simplicity, Uniformity, Usefulness, Conceptually

Soundness, Integrity, Coherency, Uniqueness and Feasibility soft-goals. These

soft-goals can be operationalized by: (1) Writing Scenarios using Regular

Languages (Hsia et al., 1994; Cheung et al., 2006), OR (2) Writing Scenarios

following concrete syntax rules (Leite et al., 2000; Anda and Sjoberg, 2002;

Denger et al., 2005; Phalp et al., 2007; Sinha et al., 2010), OR (3) Analyzing

scenarios using NLP techniques.

Properties that contribute positively to Internal Consistency are modeled

using HELP links – in Non-interferential, Boundedness, Reversibility and

Liveness soft-goals. These soft-goals can be operationalized by: (1) Writing

scenarios using Regular Languages (Hsia et al., 1994; Cheung et al., 2006), OR

(2) Analysis of Scenarios with Petri-Nets (Lee et al., 1998; Lee et al., 2001; Zhao

and Duan, 2009; Somé, 2010); OR (3) OR Analysis of Scenarios with LTS

(Sinnig et al., 2009).

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

83

Help

He
lp

He
lp

H
el

p

Help

He
lp

An
d An
d

An
d

An
d

He
lp

He
lp

H
u r

t

H
el

p

H
ur

t
H

ur
t

H
u r

t

H
ur

tHu
rt

H
ur

t He
lp

H
el

p

He
lp

H
el

p
H

el
p

He
lp

He
lp

Help

Figure 16 – SIG of SRS Correctness.

3.3.
Final Considerations

The process of scenario-based SRS verification is a complicated activity; no

single solution is effective to resolve the challenges of dealing with Unambiguity,

Completeness, Consistency and Correctness. And, there is a lack of systematic

approaches to model and organize the related properties to Unambiguity,

Completeness, Consistency and Correctness of scenario-based SRS.

We have used the NFR framework to help the organization (Quality Model

for Scenarios) of properties that contribute to Unambiguity, Completeness,

Consistency and Correctness qualities with operationalizations using NLP

techniques, Petri-Nets or LTSs, which can enable the automated SRS verification.

The quality model for scenarios can be used to evaluate static and dynamic

properties of scenario-based SRS; and, it provides benefits due to the following

reasons: (1) it identifies properties to be evaluated due to individual and

interacting scenarios; (2) it shows what kind of operationalizations can be made to

support the evaluation of properties; and (3) it is possible to reuse the patterns and

specialize them for more specific scenario languages.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

84

4
Scenario Analysis Approach

Scenarios are the main technique for modeling user requirements, which

have been widely adopted by user-oriented approaches for software development.

Due to natural language, defects are inevitably introduced in scenario

descriptions. In this chapter, we discuss our approach for detecting defects in

acquired scenario descriptions. It detects wrong information, missing information

and erroneous situations that can be hidden within scenarios and their

relationships with related scenarios.

For it, we (1) describe scenarios using a Restricted-from of Natural

Language (RNL) Scenario technique, which presents a concrete grammar based

on linguistic patterns to write sentences and describes the relationships among

scenarios, and heuristics to identify non-explicit relationships; (2) instantiate the

Quality Model for Scenarios (Chapter 3); and (3) consider the results achieved

by NLP and Petri-Net based related work.

In our scenario analysis approach: First, requirements engineers start to

describe the different functionalities, services or situations of the system as

textual scenarios. Second, irrelevant information within scenario elements are

removed. Third, by an automatic transformation, an initial system design is

derived by translating these scenarios into Place/Transition Petri-Nets, and

synthesizing them into a consistent whole Petri-Net which represents the

relationships among related scenarios. Fourth, from these representations

(Scenarios and their resulting Petri-Nets), defects that hurt unambiguity and

completeness of scenarios are detected by analyzing structural properties of

scenarios, and defects that hurt consistency and correctness of scenarios are

detected by analyzing behavioral properties of equivalent Petri-Nets. Fifth, the

analysis outcome is formatted and returned to the requirements engineers.

Sixth, if defects are found, the analysis feedback is used to improve the scenario

descriptions, since the identified defects and their causes can be traced to the

scenarios. The approach also shows the source of errors detected in equivalent

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

85

Petri-Nets, i.e., Petri-Net analysis errors are traced into defects in scenarios or

their relationships. With the feedback provided by the approach, the requirements

engineer can improve the scenario descriptions and then the process starts again in

pre-process activity until no defects are detected.

Below in Figure 17, we detail the activities of our analysis approach using

the SADT language (Ross, 1977). The activities two to five (Pre-process, Derive,

Analyze and Generate) are performed automatically by the C&L (2015) tool.

Figure 17– SADT of the Scenarios Analysis Approach.

4.1.
Writing Restricted-form of Natural Language Scenarios

This activity is carried out by requirements engineers, which start to elicit

the requirements and describe the different situations, functionalities, services or

tasks of the system as scenario representations. In Leite et al. (2000), the scenario

construction process is detailed and decomposed in other activities.

As mentioned before, the language used to write these scenarios is a

Restricted-form of Natural Language (RNL). Using RNL it is possible to write

imperative and declarative sentences. An imperative sentence describes actor

events; and a declarative sentence describes actor or resource states. Thus,

software requirements specifications can be described as clear and well-defined

scenario descriptions.

The use of RNL restricts the vocabulary used to write scenarios and

prevents the introduction of ambiguous sentences in the scenario specification,

contributing to the quality of documentation. RNL is also necessary to define

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

86

syntax rules for sentences construction. Moreover, it helps the automatic

transformation of textual scenarios into formal executable models.

The natural language based-scenario used in this work is an adaptation of a

previous language (Leite et al., 2000). Unlike Leite et al. (2000), our focus is the

analysis of scenarios. For this purpose, a new scenario language is defined by

adding the pre-condition and post-condition attributes, and the repetition structure

control to the grammar proposed in (Leite et al., 2000).

This sub-section begins with a definition of an abstract conceptual model for

the proposed scenario language. Next, it presents a concrete grammar based on

linguistic patterns to write sentences within scenarios using a restricted-form of

natural language. It also describes the relationships among scenarios, and

heuristics to identify non-explicit relationships.

4.1.1.
Scenario

Scenario specifications capture system behaviors or situations in the domain

(Leite et al., 2000) and, it helps the understanding of the requirements by the

developers and other stakeholders.

In literature, the term scenario is used with different meanings in different

contexts, and there is no clear distinction between scenarios and use cases. While

some authors consider that each scenario corresponds to one use case (Glinz,

2000), others define a scenario as sequences of use case steps that represent

different paths through a use case (Cockburn, 2001). According to Glinz (2000), a

scenario may comprise a concrete sequence of interaction steps (instance

scenario) or a set of possible interaction steps (type scenario). Based on

definitions from Glinz (2000) and Leite et al. (2000), we stated a scenario

definition that enables a further transformation.

A scenario is a collection of partially ordered event occurrences, each

guarded by a set of conditions (pre-condition and post-condition) or restricted by

constraints. An event is an operation or an interaction involving persons,

organizations, system, environment, or system’s components. A condition is an

actor/resource/system state (e.g. the availability of some resource). An actor can

be a user, organization, device, the system, system’s components or agents in the

environment; they have a role in the scenario or act on the Universe of Discourse.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

87

Figure 18 presents an abstract conceptual model for the proposed scenario

language, using a class diagram. According to our conceptual model, the scenario

language is composed of the main entity Scenario, and the Context, Resource,

Actor, Episode, Exception and Constraint entities.

In the proposed language, a scenario starts in an initial state (context) with

all necessary Resources and Actors, and must satisfy a Goal that is reached by

performing its Episodes. The episodes describe the operational behavior of the

situation, which includes the main course of action and possible alternatives. An

Exception can arise during the execution of episodes, and indicates that there

exists an obstacle to satisfy the goal. The treatment to this exception does not

need to satisfy the scenario goal. A scenario pre-condition, post-condition,

constraint, episode or exception can be expressed by another scenario.

Figure 18 - Scenario Conceptual Model.

4.1.1.1.
Title

The title of a scenario identifies the scenario using a declarative sentence,

and it must be unique.

4.1.1.2.
Goal

The goal describes the purpose of the scenario using a declarative sentence,

and it gives a general idea about the scenario main purpose and how it is achieved.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

88

4.1.1.3.
Context

The context describes the scenario initial state using declarative sentences,

and it must be described through at least one of the following sub-components:

Pre-condition, Post-condition, Geographical or Temporal location.

Pre-condition expresses the initial state of the scenario. Post-condition

expresses the final state of the scenario. Geographical location represents the

physical set of the scenario. Temporal location is the time specification for the

scenario development.

Pre-conditions, Post-conditions, Geographical locations and Temporal

locations may be expressed by one or more simple sentences linked by the logical

connectors AND or OR. A pre-condition or post-condition sentence can be

detailed in another scenario.

4.1.1.4.
Resources

Resources are an enumeration of relevant physical elements or information

(passive entities) that must be available in the scenario. They are used by the

actors in the episodes to achieve scenario’s goal. Resources must appear in at least

one of the episodes.

4.1.1.5.
Actors

Actors are an enumeration of persons, device or organization structures

(active entities) that have a role in the scenario. They are directly involved with a

situation. Actors must appear in at least one of the episodes.

4.1.1.6.
Episodes

They are a set of actions that give an operational description of behavior.

They represent the main flow, which is a sequence of steps where everything

works as expected. An episode can be described as a scenario.

An episode e is a 7-tuple (Id, Sentence, Type, Condition, Constraint, Pre-

condition, Post-condition). Every episode is identified through an identifier Id

and a Type. An episode performs an action - Sentence (imperative) that can use (or

modify) resources and be executed by actors. Depending on the episode type,

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

89

conditions are added (conditional or loop episode). Optionally, the following

attributes can be added: (1) Constraints that restrict the quality with witch the

episode is performed; (2) Pre-conditions that we expect are already satisfied

before the episode is performed; (3) Post-conditions that we expect will be

achieved after the episode occurs. An episode is carried out only when the set of

pre-conditions are satisfied.

Pre-condition and post-condition are described as declarative sentences

involving relevant actor/resource/system states (e.g. the availability of a resource).

They are different of context’s pre-condition and context’s post-condition

because: (1) context’s pre-conditions are the state of the system before the

scenario is started; (2) context’s post-conditions are the state of the system when

the set of episodes are carried out. These attributes are important in the modeling,

analysis and design synthesis of concurrent systems (Lee et al., 1998; Cheung et

al., 2006). Pre-conditions and post-conditions can be expressed by one or more

single sentences linked by the logical connectors AND or OR.

Episodes are simple, conditional, optional and loop ones. Simple episodes

are those necessary to complete the scenario. Conditional episodes are those

whose occurrence depends on internal or external conditions. Optional episodes

are those that may or may not take place depending on conditions that cannot be

detailed. Loop episodes can be used as repetition structures whose occurrence

depends on internal or external conditions. Internal conditions may be due to

alternative pre-conditions, actors or resources constraints and previous episodes.

External conditions may be provided by external actors or another scenario.

Conditions can be expressed by one or more single logical sentences linked by the

logical connectors AND or OR.

Independently of its type, an episode can be expressed as a single action or

can itself be conceived as a scenario, thus enabling the possibility of

decomposition of a scenario in sub-scenarios.

A sequence of episodes implies a precedence order, but a non-sequential

order can be bounded by the symbol “#” allowing the grouping of two or more

episodes. This is used to describe indistinct sequential order, concurrent or

parallel episodes (#<Episode Series>#).

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

90

4.1.1.7.
Exception

Exceptions are situations that prevent the proper course of the scenario. The

treatment of the exception may be expressed through a sentence or detailed in

another scenario. An exception hinders the achievement of the scenario goal, and

it can describe an alternative or exceptional execution flow.

An exception ex is a 4-tuple (Id, Cause, Solution, Post-condition). Every

exception is identified through an identifier Id. An exception: (1) is caused by

invalid input data or the lack or malfunction of a necessary resource

(resource/system state) - Cause; (2) is treated by an imperative sentence –

Solution; and optionally (3) may generate effects on the resource/system states, or

simply produce a message – Post-condition.

An exception is always branched from an episode of the main execution

flow. Causes and post-conditions can be expressed by one or more single

sentences linked by the logical connectors AND or OR.

4.1.1.8.
Constraint

Scope or non-functional requirement referring to a given entity, and

described as a declarative sentence that restricts the quality with witch: (1) the

goal is achieved, (2) a resource is needed and (3) an episode is performed. Thus,

Constraint is an attribute of resource, episode or context’s sub-components.

Constraints can be expressed by a set containing one or more single sentences.

Figure 19 presents a scenario example. This example itself is explained

later. The “Submit Order” scenario describes the interactions between the Online

Broker System and its partner services, Local Supplier and International Supplier.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

91

Figure 19 – Example of scenario (Submit Order) in the Online Broker System.

4.1.2.
Restricted-form of Natural Language

As already mentioned, scenario elements (Title, Goal, Context, Resource,

Actor, Episodes and Exception) are written using a Restricted-form of Natural

Language (RNL). In order to reduce ambiguity in natural language-based

sentences, we have defined a scenario grammar for writing sentences in

accordance to its conceptual model (Figure 18). Using this grammar, it is possible

to write imperative (title, episode sentence or exception) and declarative

(conditions or states) sentences. An imperative sentence describes actor events;

and a declarative sentence describes actor or resource states.

A sentence in scenario grammar is basically defined according to the format

“Subject + Verb + Predicate”, where subject, verb and predicate represent the

subject, main verb and objects affected by the main verb, respectively. Therefore,

the sentence construction is centered on the main verb.

Table 13 shows the grammar for writing scenario elements using partial

Extended-BNF (ISO/IEC 14977, 2015). The scenario model should be seen as a

syntax and structural guidelines to: (1) obtain a homologous description style, (2)

demonstrate the aspects that scenarios can cover and (3) facilitate the automated

analysis (Leite et al., 2000).

According to the grammar described in Table 13, a Scenario must be

described by: Title, Goal, Context, Resource, Actor, Episodes and Exception.

TITLE: Submit Order
GOAL: Allow customers to find the best supplier for a given order.
CONTEXT:
 PRE-CONDITION: The Broker System is online AND the Broker System welcome page is being displayed
ACTOR: Customer, Broker System
RESOURCES: Login page, Login information, Order
EPISODES
 1. The Customer loads the login page
 2. The Broker System asks for the Customer’s login information
 3. The Customer enters her login information
 4. The Broker System checks the provided login information
 5. The Broker System displays an order page
 6. The Customer creates a new Order
 7. DO the Customer adds an item to the Order WHILE the Customer has more items to add to the order
 8. The Customer submits the Order
 9. The Broker System broadcast the Order to the Suppliers
 10. # LOCAL SUPPLIER BID FOR ORDER
 11. INTERNATIONAL SUPPLIER BID FOR ORDER #
 12. PROCESS BIDS
EXCEPTIONS
 1.1 IF Customer is not registered THEN REGISTER CUSTOMER
 2.1 IF after 60 seconds THEN The Broker System displays a login timeout page
 4.1 IF the Customer login information is not accurate THEN The Broker System displays an alert message
 8.1 IF the order is empty THEN The Broker System displays an error message

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

92

Table 13 – Scenario Grammar
TYPE DESCRIPTION
<Scenario> TITLE: <Title> +

GOAL: <Goal> +
CONTEXT: <Context> +
RESOURCE: {<Resource>}1

N +
ACTOR: {<Actor>}1

N +
EPISODES: <Episodes> +
EXCEPTION: {<Exception>}

<Title> ([Actor | Resource] + Action-Verb + Predicate) | Phrase
<Goal> [Actor | Resource] + Verb + Predicate
<Context> [GEOGRAPHICAL LOCATION: <Geographical Location>] +

[TEMPORAL LOCATION: <Temporal Location>] +
[PRE-CONDITION: <Pre-condition>] +
[POST-CONDITION: <Post-condition>]

<Geographical
Location>

Name + [CONSTRAINT: {<Constraint>}] |
<Geographical Location> <connective> <Geographical Location>

<Temporal Location> Name + [CONSTRAINT: {<Constraint>}] |
<Temporal Location> <connective> <Temporal Location>

<Pre-condition> <expression> | <Title> | <Pre-condition> <connective> <Pre-condition>
<Post-condition> <expression> | <Title> | <Post-condition> <connective> <Post-condition>
<expression> ((Actor | Resource) + State-Verb + Predicate) | Phrase
<connective> AND | OR
<Resource> Name + [CONSTRAINT: {<Constraint>}]
<Actor> Name
<Episodes> <Group> | <Episodes> <Group>
<Group> <Sequential Group> | <Non-Sequential Group>
<Sequential Group> <Episode><Episode> | <Sequential Group><Episode>
<Non-Sequential Group> {<Episode>} # <Episode Series> # {<Episode>}
<Episode Series> <Episode> <Episode> | < Episode Series><Episode>
<Episode> <Simple Episode> | <Conditional Episode> | <Optional Episode> |

<Loop Episode>
<Simple Episode> <Id> <Episode Sentence> + [PRE-CONDITION: <Pre-condition>] +

[POST-CONDITION: <Post-condition>] + [CONSTRAINT: {<Constraint>}]
<Conditional Episode> <Id> IF <Condition> THEN <Episode Sentence> +

[PRE-CONDITION: <Pre-condition>] + [POST-CONDITION: <Post-condition>]
+ [CONSTRAINT: {<Constraint>}]

<Optional Episode> <Id> “[” <Episode Sentence> “]” + [PRE-CONDITION: <Pre-condition>] +
[POST-CONDITION: <Post-condition>] + [CONSTRAINT: {<Constraint>}]

<Loop Episode> <Id> DO <Episode Sentence> WHILE <Condition> +
[PRE-CONDITION: <Pre-condition>] + [POST-CONDITION: <Post-condition>]
+ [CONSTRAINT: {<Constraint>}]

<Id> <id-chair > { (. | , | ; | :) + <id-char> } + [. | , | ; | :]
<id-char> Letter | Digit
<Episode Sentence> ([Actor | Resource] + Action-Verb + [Direct-Object-Predicate]) | <Title>
<Condition> <atomic sentence> | <Condition> <connective> <Condition>
<atomic sentence> ((Actor | Resource) + Linking-Verb + Predicate)| Phrase
<Exception> <Id> IF <Cause> THEN <Solution> + [POST-CONDITION: <Post-condition>]
<Cause> <atomic sentence> | <expression> | <Cause> <connective> <Cause>
<Solution> ([Actor | Resource] + Action-Verb + [Direct-Object-Predicate]) | <Title>
<Constraint> ([Actor | Resource] + [MUST] + [NOT] + Predicate) | <Title> | Phrase

In Table 13, + means composition, {x} means 0 or more occurrences of x,

{x}1
N means 1 or more occurrences of x, () is used for grouping, | stands for “OR”

and [x] denotes that x is optional. The following words contain only terminal

symbols: Phrase, Verb, Predicate, Name, Action-Verb, Linking-Verb, Letter, and

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

93

Digit. The following words and phrases are terminal symbols: TITLE, GOAL,

CONTEXT, RESOURCE, ACTOR, EPISODES, EXCEPTION,

GEOGRAPHICAL LOCATION, TEMPORAL LOCATION, PRE-

CONDITION, POST-CONDITION, CONSTRAINT, IF, THEN, WHILE, DO,

AND, OR, MUST, NOT, “[” and “]”. Figure 19 shows how a scenario is

described using the terminal and non-terminal symbols described in Table 13.

Our scenario grammar assumes that an episode sentence and exception

solution are declared according to the format “[Actor | Resource] + Action-Verb

+ [Direct-Object-Predicate]”, where “Action-Verb” express action and are the

most common verbs in the present tense, and “Direct-Object-Predicate” refers to

an object affected by the action. In the sentence “The Customer submits the

Order”, the work “submits” is an Action-Verb and the word “Order” is the

Direct-Object-Predicate.

For example, a simple episode is described as follows:

<Id> (([Actor | Resource] + Action-Verb + [Direct-Object-Predicate]) |

<Title>) +

[PRE-CONDITION: <Pre-condition>] +

[POST-CONDITION: <Post-condition>] +

[CONSTRAINT: {<Constraint>}]

The first element of a simple episode is the identifier. The second element is

a Sentence that describes a situation involving users, system, environment or

system’s components. Optionally; the other elements are non-functional

requirements (Constraint) related to the episode, the initial state (Pre-condition)

before the episode is carried out, and the expected results (Post-condition) after

the episode occurs.

An exception is described as follows:

<Id> IF <Cause> THEN (([Actor | Resource] + Action-Verb + [Direct-

Object-Predicate]) | <Title>) +

[POST-CONDITION: <Post-condition>] +

The first element of an exception is the identifier. This is composed by the

identifier of the episode followed by the number of the exception (an episode can

branch several exceptions). The second element is the Cause that triggers the

exception, the third element is the Solution to treat the exception, and optionally,

the Post-condition attribute is the expected results after performing the Solution.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

94

A condition may be formally defined as a logical sentence declared

according to the format “(Actor | Resource) + Linking-Verb + Predicate”. In

linguistics (Cambridge, 2015), a “Linking-Verb” (copular verb) is a word used to

link the Subject (Actor or Resource) of a sentence with a Predicate (a subject

complement), such as the word “is” in the sentence “Feeder area is available”.

Linking verbs are not followed by objects. Instead, they are followed by

phrases which give extra information about the subject (e.g. noun phrases,

adjective phrases, adverb phrases or prepositional phrases). Linking verbs include

the conjugated form of limited number of verbs: Be, Look, Feel, Taste, Smell,

Sound, Seem, Appear, Get, Become, Grow, Stay, Keep, Turn, Prove, Go, Remain,

Resemble, Run, Lie (Usingenglish, 2015).

Like condition, a State (pre-condition and post-condition) may be formally

defined as a sentence declared according to the format “(Actor | Resource) +

State-Verb + Predicate”. In linguistics (Grammaring, 2015), a “State-Verb”

express a state which is relatively static. They include verbs of perception,

cognition, the senses, emotion and state of being. In the sentence “The buffer is

empty”, the work “is” is a State-Verb and the word “empty” is the Predicate.

State verbs are not normally used in continuous forms. Examples of state verbs

include: Appear, Be, Believe, Belong, Consider, Consist, Contain, Cost, Doubt,

Exist, Fit, Hate, Hear, Have, Know, Like, Love, Matter, Mean, Need, Owe, Own,

Prefer, Remember, Resemble, Seem, Suppose, Suspect, Understand, Want, Wish.

4.1.3.
Scenario Relationships-based Modularity

When facing large systems, the number of scenarios could be unmanageable

and the requirements engineers become sunk in details, losing the global vision of

the system. Or simply, the requirements engineers are most likely interested in a

subset of scenarios. In order to face this problem, Leite et al. (2000) proposes the

construction integration scenarios based on the existing scenarios. An integration

scenario gives an overview of the relationship among several scenarios of the

system, since each integration scenario episode corresponds to a sub-scenario. A

sub-scenario details in another scenario a complex episode sentence.

Thus, the scenario language is designed with modularity in mind, mainly

using a mereology operator for decomposition and the construction of integration

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

95

scenarios. Modularity is considered a mechanism to deal with the scenario

explosion problem (Lee et al., 1998; Leite et al., 2000).

4.1.3.1.
Sequential Relationships

Besides of integration scenario, other relationships (pre-condition, post-

condition, sub-scenario, exception and constraint) also provide modularity

through the inter-connectivity among related scenarios. For example, the

comprehension of an episode is facilitated by the use of natural language, well-

bounded situations, and mainly through the use of sub-scenarios, i.e., an episode

sentence may be detailed in another scenario, or an exception may be treated by

another scenario.

A scenario element is detailed in another scenario when (Leite et al., 2000):

 Common behavior is detected in several scenarios;

 A complex conditional or alternative course of action appears in a

scenario; and

 The need to enhance a situation with a concrete and precise goal is

detected inside a scenario.

Through these relationships it is possible to determine the order in which the

scenarios should be executed. For instance, if the scenario X has among its pre-

conditions the scenario Y, then the last one must be executed first (precedence

order).

In a scenario description, if we include the title of another scenario

(UPPERCASE sentence) within the context (pre-condition or post-condition), an

episode (sentence), an exception (solution) or a constraint, then, this context sub-

component, episode, exception or constraint will be detailed or treated by this last

scenario. Thus, the scenario language defines semantics to represent sequential

relationships among scenarios. Scenarios can be connected to other scenarios

through links or references, yielding a complex network of relationships:

 Pre-condition is a relationship defined within the context element of a

scenario. If a scenario has among its pre-conditions another scenario, then

the last one must be executed first.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

96

 Post-condition is a relationships defined within the context element of a

scenario. If a scenario has among its post-conditions another scenario, then

the last one must be executed last.

 Sub-scenario relationship is defined when an episode (sentence) of a

scenario can be described by another scenario. This allows the

decomposition of complex scenarios, facilitating both its writing and

understanding.

 Exception relationship is defined when a scenario is used to detail the

treatment of an exception (solution); the scenario that treats the exception

is only executed when exception’s cause is triggered in the main scenario.

 Constraint relationship is defined when a scenario is used to detail non-

functional aspects that qualify/restrict the proper execution of another,

which also give us an order among the scenarios.

4.1.3.2.
Non-sequential Relationships

Often in software development processes, multiple stakeholders are

involved, with different needs, assumptions and points of view. But, a given group

of stakeholders can be most likely interested in a specific subset of scenarios.

According to Lee et al. (1998), although such subsets of scenarios might

seemingly be independent, they are rarely truly independent in practice. Thus,

scenarios also interact by complex non-sequential relationships, and in some cases

these relationships are non-explicit.

So, scenarios are also related to other scenarios by explicit and non-explicit

non-sequential relationships.

Explicit non-sequential relationships among scenarios are described using

the structure for grouping non-sequential episodes (#<episodes series>#); i.e., if a

set of episodes inside a non-sequential group are detailed in another scenarios

(sub-scenario relationship), then these sub-scenarios could be executed in an

indistinct order or concurrently. In Figure 22, the episodes 10 and 11 of the main

execution flow reference sub-scenarios described in Figure 23. These sub-

scenarios are explicitly described to be executed in an indistinct order or

concurrently.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

97

In some cases, the given scenarios could interact by non-explicit and non-

sequential relationships; often, they communicate by concurrency, which can

lead to erroneous situations such as deadlocks. From the concurrency perspective,

a set of scenarios can be considered as a set of concurrently executing threads,

and they could interact or compete with each other by communication channels

or shared resources.

In practice, it is very difficult to identify non-sequential relationships among

scenarios, because most of the proposed languages to write scenarios do not

provide:

 Constructs or semantics to represent explicitly the relationships among

scenarios;

 Heuristics to find non-explicit relationships based on concurrency

characteristics (e.g. non-determinism and synchronization by shared

resources);

 Heuristics to assist the developer in making explicit non-sequential

relationships.

4.1.3.3.
Heuristics to Find Non-explicit and Non-sequential Relationships

An heuristic for finding non-explicit relationships is shown in this sub

section. It uses information of scenario descriptions and the scenario model for

making explicit non-sequential relationships among scenarios.

This heuristic could assist the developers in identifying concurrency

opportunities since initial requirements engineering activities, and requirement

engineers in detecting defects arose from interactions among related scenarios.

In a concurrent system, local processes are first developed, and it has

particular characteristics such as non-deterministic execution and

synchronization between processes. These characteristics arise from the

possibility of communication between process, which can be via communication

channels or shared resources, resulting in complex interactions.

In the scenario language, two or more scenarios are likely related when they

share common portions in their descriptions, i.e., they involve the participation of

common actors, they access shared resources or they are executed in the same

context. Leite et al. (2005) used the concept of Proximity Index to more detailed

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

98

comparisons between any two scenarios with obscure and poorly defined borders.

It is defined by:

Let Iij = ( * Cij +  * Aij +  * Rij) / ( * Cij +  * Aij +  * Rij)

be the proximity index of Scenarios Si and Sj; where:

, ,  are weight factors.

Cij = | Context (Si)  Context (Sj) |;

Aij = | Actor (Si)  Actor (Sj) |;

Rij = | Resource (Si)  Resource (Sj) |;

Cij = | Context (Si)  Context (Sj) |;

Aij = | Actor (Si)  Actor (Sj) |;

Rij = | Resource (Si)  Resource (Sj) |;

Actor (Sk): Actors of scenario k;

Resource (Sk): Resources of scenario k;

Context (Sk): Context of scenario k.

As the first step of the heuristic for finding non-explicit non-sequential

relationships among scenarios (see Heuristic 1), we filter sequentially and explicit

non-sequentially related scenarios.

As the second step of the Heuristic 1, we adapted the Proximity Index

among any two scenarios defined in (Leite et al., 2005), by considering only

common actors or shared resources.

In this case, actors and resources have the same importance because two

scenarios might interact by common actors or shared resources ( =  = 1). Thus,

if two scenarios have common actors or share resources, then, they could be

related to each other. If the Proximity Index is higher or equal than 0.5, then

there is an indication that scenarios need to be compared in a more detailed way.

Let Iij = MAX ((Aij / Aij), (Rij / Rij)) be the proximity index of

Scenarios Si and Sj; where:

MAX (x, y): Find maximum of x and y.

As the third step of this heuristic, each pair of two scenarios with higher

proximity index is compared in more detail. This comparison is needed to

determine whether they interact by non-determinism or synchronization

constraints; that is:

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

99

 Non-determinism: It compares pre-conditions to determine whether

there is a non-deterministic execution or not. For example, when a pre-

condition described in a scenario Si appears like pre-condition in another

scenario Sj, then, Si and Sj might interact concurrently.

 Synchronization: It compares pre-conditions against post-conditions to

determine whether there is synchronization or not. For example, when a

pre-condition described in a scenario Si appears like post-condition in

another scenario Sj, and a pre-condition described in Sj appears like post-

condition in Si, then, Si and Sj might interact concurrently.

In Heuristic 1 (Figure 20), we list some general criteria to make explicit

potentially concurrent scenarios (Si and Sj), since non-deterministic and

synchronization perspectives. In order to compare two scenario elements (e.g.

two goals), or verify the similarity between an item and the items of a set (e.g.

intersection between two set of pre-conditions), we use Levenshtein’s distance

(Levenshtein, 1966).

In Heuristic 1:

 Seq-Related(Si, Sj): scenario i and scenario j are sequentially related by:

pre-condition, post-condition, constraint, sub-scenario or exception.

 Explicit-Non-Seq-Related(Si, Sj): scenario i and scenario j are non-

sequentially related by non-sequential group construct: #<episode

series>#.

 Pre-Cond (Sk): {pre-conditions in the context of scenario k  pre-

conditions in the episodes of scenario k};

 Post-Cond (Sk): {post-conditions in the context of scenario k  post-

conditions in the episodes of scenario k};

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

100

Figure 20 - Making Explicit Non-sequential Relationships (Heuristic 1).

In order to improve the reliability of systems initially specified as scenarios

representations, the identification of non-explicit relationships among scenarios

makes it possible to perform rigorous analysis focusing on related scenarios and

achieve a more consistent and more correct requirements specification. This is

especially important for systems involving concurrent, asynchronous, distributed,

non-deterministic or parallel processes, such as distributed web services, multi-

agent systems, manufacturing systems or shared memory-based systems.

4.1.4.
Running Example

This section describes a set of scenarios for describing a system that

involves sequential and non-sequential relationships.

In the Online Broker System, the Broker System interacts with its partner

services: Local Supplier and International Supplier. The system under

consideration is an Online Broker System. The goal of the system is to allow

customers to find the best supplier for a given order. A customer fills up an online

order form and after submission; the system broadcasts it to local and

international suppliers. Each supplier after examining the order may decide to

decline or submit a bid. A local supplier needs to add taxes to the order total,

while an international supplier needs to ensure an order does not include items

restricted for export. Submitted bids are sent back to the broker to be shown to the

customer, who eventually asks the system to proceed with a bid. The full

Heuristic 1: Making Explicit Non-sequential Relationships
Input: Scenario Si and Scenario Sj
Output: are Si and Sj potentially concurrent? : {YES or NOT}
Begin:

1. IF Seq-Related(Si, Sj) THEN Return NOT;
2. IF Explicit-Non-Seq-Related(Si, Sj) THEN Return NOT;
3. Calculate the proximity index for Si and Sj: Iij = MAX ((Aij / Aij) , (Rij / Rij));
4. IF Iij  0.5 THEN determine whether Si and Sj are concurrent by non-determinism:

→IF | Pre-Cond (Si)  Pre-Cond (Sj) | = | Pre-Cond (Si)  Pre-Cond (Sj) | THEN
Si and Sj are simultaneously enabled by the same pre-condition;
Si and Sj are potentially concurrent;

Return YES;
5. IF Iij  0.5 THEN determine whether Si and Sj are concurrent by synchronization:

→IF | Pre-Cond (Si)  Post-Cond (Sj) |  1 AND | Post-Cond (Si)  Pre-Cond (Sj) |  1
THEN

Si and Sj are simultaneously executed;
Si and Sj are potentially concurrent;

Return YES;
6. Return NOT;

End

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

101

scenarios of the “Online Broker System” example are shown in (Somé, 2010)

using a use case language based on Cockburn’s template (Cockburn, 2001).

In order to understand the execution order of a set of related scenarios, it is

necessary to identify the main scenario of this set (or main scenarios). A main

scenario will be the scenario that does not require any other scenario of the set, or

that reference in its description to other scenarios. According to Almentero et al.

(2014), we first determine the relationship between the scenarios of the set, and

from identified relationships we will establish an execution order between them.

In the “Online Broker System”, the Submit Order scenario is a main

scenario because it precedes all others, and it is related to other scenarios by

sequential and explicit non-sequential relationships. In the original version shown

in (Somé, 2010), it is not obvious to perceive the relationships among related

scenarios and that Process Bids scenario is a scenario executed after querying the

customer (See Figure 21). The Process Bids scenario (Figure 23) is referenced

inside Supplier scenarios (Somé, 2010). Other relationship that is difficult to

perceive is the sequential relationship between “Register Customer” (Figure 23)

and the main scenario “Submit Order”. The meaning of the relationship is that

scenario “Register Customer” extends scenario “Submit order” when condition

“Customer is not registered” holds.

Figure 21 - “Submit Order” use case in the Online Broker System (Somé, 2010).

Using the scenario language proposed in this work, we re-described the

Submit Order scenario to make explicit the sequential relationships by: (1) adding

TITLE: Submit Order
SYSTEM UNDER DESIGN: Broker System
PRE-CONDITION: The Broker System is online AND the Broker System welcome page is being displayed
SUCCESS POST-CONDITION: An Order has been broadcasted
STEPS
 1. The Customer loads the login page
 2. The Broker System asks for the Customer’s login information
 3. The Customer enters her login information
 4. The Broker System checks the provided login information
 5. The Broker System displays an order page
 6. The Customer creates a new Order
 7. Repeat while The Customer has more items to add to the order
 7.1 The Customer adds an item to the Order
 8. The Customer submits the Order
 9. The Broker System broadcast the Order to the Suppliers
 10. Enable in parallel use cases Local Supplier bid for order, International bid
for order
ALTERNATIVES

2a. after 60 seconds
 2a1. The Broker System displays a login timeout page
4a. The Customer login information is not accurate
 4a1. GOTO Step 2.
8a. The Order is empty
 8a1. The Broker System displays an error page

EXTENSION POINTS
 STEP 1. login page loaded

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

102

a last episode, which references the Process Bids scenario through sub-scenario

relationship (See Figure 22); and (2) mapping the extension point into an

exception with references the Register Customer scenario through exception

relationship.

Figure 22 - Description of scenario “Submit Order” in the Online Broker System.

In Figure 22, the episodes 10 (LOCAL SUPPLIER BID FOR ORDER), 11

(INTERNATIONAL SUPPLIER BID FOR ORDER), 12 (PROCESS BIDS), and

exception 1.1 (REGISTER CUSTOMER) are detailed in another scenarios. Figure

22 shows the sequential interaction among scenarios by sub-scenario (PROCESS

BIDS) and exception (REGISTER CUSTOMER) relationships, and non-

sequential relationships by explicit concurrency construct (SUPPLIERS).

PROCESS BIDS, REGISTER CUSTOMER, LOCAL SUPPLIER BID FOR

ORDER and INTERNATIONAL SUPPLIER BID FOR ORDER are presented in

Figure 23 and detailed in Appendix 1. PROCESS BIDS references sequentially to

HANDLE PAYMENT scenario.

TITLE: Submit Order
GOAL: Allow customers to find the best supplier for a given order.
CONTEXT:
 PRE-CONDITION: The Broker System is online AND the Broker System welcome page is being

displayed
ACTOR: Customer, Broker System
RESOURCES: Login page, Login information, Order
EPISODES
 1. The Customer loads the login page
 2. The Broker System asks for the Customer’s login information
 3. The Customer enters her login information
 4. The Broker System checks the provided login information
 5. The Broker System displays an order page
 6. The Customer creates a new Order
 7. DO the Customer adds an item to the Order WHILE the Customer has more items to add to the order
 8. The Customer submits the Order
 9. The Broker System broadcast the Order to the Suppliers
 10. # LOCAL SUPPLIER BID FOR ORDER
 11. INTERNATIONAL SUPPLIER BID FOR ORDER #
 12. PROCESS BIDS
EXCEPTIONS
 1.1 IF Customer is not registered THEN REGISTER CUSTOMER
 2.1 IF after 60 seconds THEN The Broker System displays a login timeout page
 4.1 IF the Customer login information is not accurate THEN The Broker System displays an alert message
 8.1 IF the order is empty THEN The Broker System displays an error message

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

103

Figure 23 – Scenarios of the “Online Broker System”.

In this example, from the main scenario (Submit Order), it is possible to

identify the sequentially (PROCESS BIDS, REGISTER CUSTOMER) and

explicit non-sequentially related scenarios (LOCAL SUPPLIER AND

INTERNATIONAL SUPPLIER).

In most of projects, it is difficult to identify the non-explicit relationships

among scenarios, mainly, non-sequential relationships among them.

For example, if we do not have any scenario referencing explicitly other

scenarios, it will be difficult to perceive that Suppliers’ scenarios are non-

sequentially related to each one. So, in order to identify non-explicit relationships

of “Online Broker System” scenarios, we apply the heuristic for finding non-

explicit relationships (described in Heuristic 1) to explore any two potentially

related scenarios.

As the first step of the heuristic, we calculate the proximity index among

any two scenarios. For example, we chose “Local Supplier for Bid” (S1) and

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

104

“International Supplier for Bid” (S2) to be explored, and they have a degree of

proximity high (proximity index = 1). Therefore, they must be analyzed more

deeply.

As the second step, we detect that they are enabled by the same pre-

condition, and then they are non-sequentially related by non-determinism feature.

Table 14 shows the results of proximity index (equal to 1) and scenarios S1

and S2 are related by non-explicit non-sequential relationships (Non-determinism).
Table 14 – Proximity Index between Scenarios of the Online Broker System

Non-determinism Synchronization Si Sj Aij Aij Rij Rij Iij
Goal Temp_Loc Pre-Condition Pre-Condition &

Post-Condition
S1 S2 2 4 2 2 1 Similar --- YES ---

In Figure 23, the “Local Supplier for Bid” and “International Supplier for

Bid” specify as common pre-condition the availability of the “An order has been

broadcasted”. Thus, these scenarios interact by shared resources.

We identified the non-explicit relationships, because they can be used to

perform early concurrent (potentially concurrent) system analysis to detect

potential defects due to concurrency at early software development activities.

4.2.
Pre-processing Scenarios

In order to improve the efficacy of scenario transformation algorithm and

the accuracy of NLP analysis tools, it is necessary to remove the irrelevant

information and formatting symbols, such as URLs, HTML tags, parenthesized

comments and bullets. According to Liu et al. (2014), the noise from the input

document may affect the parsing accuracy. This is a general process applicable to

any document.

Therefore, the steps to clean scenarios of these possible noise elements are

described below:

 Removal of Empty Line: There is no empty line in the scenario.

 Removal of Capitalization: often it is convenient to lower case every

character.

 Removal of Brackets: Text between brackets within a sentence is

replaced by empty character. There are various bracket symbols:

Parentheses “()”, Square Brackets “[]” and Curly Braces “{}”.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

105

 Removal of URLs: URLs and hyperlinks within a sentence like comments

or reviews should be removed.

 Removal of HTML Markup: HTML tags within a sentence should be

removed.

 Removal Punctuation: For NLP analysis, all the punctuation marks and

bullets according to the priorities should be dealt with. For example: “!”,

“#”, “?”, “•” are important punctuations that need to be removed and

replaced by a white space character.

 Apostrophe Lookup: According to Bansal (2014), to avoid any word

sense disambiguation in text, it is recommended to maintain proper

structure in it and to abide by the rules of context free grammar. When

apostrophes are used, chances of disambiguation increase. For example

“it’s is a contraction for it is or it has”.

We utilized regular expression matching to perform the filtering tasks. The

last step (Apostrophe Lookup) was not considered in our pre-processing process

because it is fairly domain dependent and a challenging topic in NLP research.

4.3.
Deriving Petri-Nets

After constructing scenarios, it is possible to automatically derive Petri-Net

formal specifications. In our approach, each scenario sentence (imperative or

declarative) is translated into a Petri-Net node (transition or place, respectively).

These Petri-Net nodes are linked by arcs giving rise to a Petri-Net model. Each

translated scenario defines components of the initial system design.

4.3.1.
Transforming Scenarios into Petri-Nets

We assume that a scenario S: (1) starts at an idle state with all necessary

resources, pre-conditions or constraints; (2) performs a collection of partially

ordered event occurrences (episodes or exceptions), each guarded by a set of

conditions (pre-conditions, post-conditions, or causes) and restricted by a set of

constraints; and (3) returns to the idle state releasing the resources, pre-

conditions (if it is not returned by some previous event) or constraints after

completion (adapted from Cheung et al. , 2006).

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

106

A Petri-Net PN is derived from a scenario S as follows: We identify the

event occurrences (episodes and exceptions) and their pre-conditions (or causes),

constraints and post-conditions. For each event, a transition is created for

denoting the location of event occurrence. Input places are created to denote the

locations of its pre-conditions, causes and constraints (They restrict but do not

impede – TRUE). Output places are created to denote the location of its post-

conditions. Event labels, condition labels and constraint labels are assigned to

these transitions and places accordingly. The initial marking M0 of the PN is then

created to denote the initial state, in which tokens are added into input places that

represent pre-conditions, causes or constraints. Execution of the scenario begins

at this initial marking which semantically means the system initial state, including

the availability of all resources, pre-condition, causes or constraints. It ends at the

same marking that semantically means the release of these resources, pre-

conditions, causes or constraints.

As the first step of the method for Transforming a Scenario into an

Equivalent Petri-Net (Method 1 in Figure 26), we define mapping rules to

translate scenario elements (Title, Goal, Context, Resource, Actor, Episodes,

Exception) into Petri-Net elements (transition, place and arc).

For each scenario element, a sub Petri-Net which contains places, transitions

and arcs is derived. The different mapping rules to derive a sub Petri-Net from a

scenario element are described using a structure composed of left and right hand

sides (LHS and RHS). LHS is the conditional part of the rule (scenario element),

and RHS is the expected result of the rule (sub Petri-Net).

Table 15, Table 16, Table 17, Table 18 and Table 19 define the mapping

rules for initial state, episodes, exception, concurrency constructs and final state of

a scenario, respectively. In LHS side (Scenario), “e” is an episode and “ex” is an

exception. In RHS side (Sub Petri-Net), “t” is a transition (with the name

attribute), “p” is a place (with the name and number of tokens attributes) and “a”

is an arc (with source and target attributes). Below, we detail these mapping rules.

In order to preserve the event sequences described within the main flow

(episodes) and exceptional flows of a scenario, we add appropriate Input dummy

place and Output dummy place to the sub Petri-Nets derived from scenario

elements. These dummy places are used for linking sub Petri-Nets derived from

sequential events (e.g. episode 1 and episode 2 of the main flow of episodes).

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

107

A Dummy transition is added to the sub Petri-Nets derived from scenario

initial state and final state. It represents an initial event or a final event derived

from the main flow of episodes, i.e., a scenario initial state or final state is

mapped into a sub Petri-Net composed of a dummy transition and its

corresponding input and output dummy places.
Table 15 – Transforming Scenario Triggering

Rule Transform Scenario Triggering – Initial State
 When
LHS
(Scenario)

Title, Resources, Context = {Constraint, Pre-condition }

 Then
RHS
(sub
Petri-Net)

1. Generate:
 →Dummy Transition t with: t.name = “DUMMY”;
 →Input dummy Place p of t with p.name = “START”, representing the Title
and Resources;
 →Output dummy Place p of t;
 →Link Input and Output dummy Place to Dummy transition t;
2. For every Constraint c in {Context  Resources}, generate:
 →Input Place p of t with: p.name = c.name; p.tokens = 1;
 →Output Arc a of t with: a.source = t; a.target = p;
3. For every Pre-condition pre in Context, generate:
 →Input Place p of t with: p.name = pre.name; p.tokens = 1;
4. Returns sub Petri-Net;

 End
Table 16 – Transforming Episode

Rule Transform Episode
 When
LHS
(Scenario)

Episode e = {Id, Sentence, Type, Condition, Constraint, Pre-condition, Post-
condition}

 Then
RHS
(sub
Petri-Net)

1. Generate:
 →Transition, t with t.name = e.Sentence;
 →Input dummy Place of t;
 →Output dummy Place of t;
 →Link Input and Output dummy Place to Dummy transition t;
 1.1. IF e.Type = “CONDITIONAL” OR “OPTIONAL”, generate:
 →Dummy Transition t_else with: t_else.name = “ELSE”;
 →Input Arc a of t_else with: a.source = Input dummy Place of t;
 →Output Arc a of t_else with: a.target = Output dummy Place of t;
 1.2. IF e.Type = “LOOP”, generate:
 →Dummy Transition t_iteration with: t_ iteration.name = “ELSE”;
 →Input Arc a of t_iteration with: a.source = Output dummy Place of t;
 →Output Arc a of t_iteration with: a.target = Input dummy Place of t;
2. For every Condition c in e, generate:
 →Input Place p of t with: p.name = c.name; p.tokens = 1;
 →Output Arc a of t with: a.source = t; a.target = p;
3. For every Constraint c in e, generate:
 →Input Place p of t with: p.name = c.name; p.tokens = 1;
 →Output Arc a of t with: a.source = t; a.target = p;
4. For every Pre-condition pre in e, generate:
 →Input Place p of t with: p.name = pre.name; p.tokens = 1;
5. For every Post-condition post in e, generate:
 →Output Place p of t with: p.name = post.name;
6. Returns sub Petri-Net;

 End

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

108

Table 17 – Transforming Concurrency Construct
Rule Transform Concurrency Construct
 When
LHS (Scenario) Episode e1 and Episode e2
 Then
RHS
(sub
Petri-Net)

1. IF e1.sentence starts with “#”, generate:
 →Dummy Transition t with: t.name = “FORK”;
 →Input dummy Place p of t;
 →Output dummy Place p of t;
 →Link Input and Output dummy Place to Dummy
transition t;
2. IF e2.sentence ends with “#”, generate:
 →Dummy Transition t with: t.name = “JOIN”;
 →Input dummy Place p of t;
 →Output dummy Place p of t;
 →Link Input and Output dummy Place to Dummy
transition t;
3. Returns sub Petri-Net1 for e1 and Petri-Net2 for e2;

 End
Table 18 – Transforming Exception

Rule Transform Exception
 When
LHS (Scenario) Episode ex = {Id, Cause, Solution, Post-condition}
 Then
RHS
(sub
Petri-Nets)

1. Generate:
 →Transition t with: t.name = ex.solution;
 →Input dummy Place p of t;
 →Output dummy Place p of t;
 →Link Input and Output dummy Place to Dummy
transition t;
2. For every Cause c in ex, generate:
 →Input Place p of t with: p.name = c.name; p.tokens =
1;
3. For every Post-condition post in ex, generate:
 →Output Place p of t with: p.name = post.name;
4. Returns sub Petri-Net;

 End
Table 19 – Transforming Scenario Completion

Rule Transform Scenario Completion – Final State
 When
LHS (Scenario) Context = {Post-condition }
 Then
RHS
(sub
Petri-Net)

1. Generate:
 →Dummy Transition t with: t.name = “DUMMY”;
 →Input dummy Place p of t;
 →Output dummy Place p of t with p.name = “FINISH”;
 →Link Input and Output dummy Place to Dummy
transition t;
2. For every Post-condition post in Context, generate:
 →Output Place p of t with: p.name = post.name;
p.tokens = 1;
3. Returns sub Petri-Net;

 End

Figure 24 depicts the visual transformation (LHS→RHS) of a simple

episode into Petri-Net elements. In this example, a simple episode (Submit Order

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

109

Scenario) is mapped into a transition with an input dummy place and an output

dummy place of the transition.

Figure 24 – Transforming Simple Episode

The visual transformation (LHS→RHS) from Scenario elements into Petri-

Net elements is depicted in

Figure 25. These transformations perform the tasks (mapping rules) defined

in Table 15, Table 16, Table 17, Table 18 and Table 19.

Conditional Episode
<Id> IF {<Condition>}1

N

THEN <Episode
Sentence>

+ {Pre-condition}
+ {Post-condition}
+ {Constraints}

Concurrency Construct
{Episodes series}

Exception
<Id> IF {<Cause>}1

N THEN
<Solution>

+ {Post-condition}

Initial state
Title, Resource,
Context :
- {Pre-condition}
- {Constraint}

Scenario (LHS) Petri-Net (RHS)

Post-condition

Constraint

Condition

Episode SentenceELSE

Output dummy place

Pre-condition

Input dummy place

Post-condition

Constraint

Condition

Episode SentenceELSE

Output dummy place

Pre-condition

Input dummy place

Simple Episode
<Id> <Episode Sentence>
+ {Pre-condition}
+ {Post-condition}
+ {Constraints}

Post-condition

Constraint

Episode Sentence

Output dummy place

Pre-condition
Input dummy place

Post-condition

Constraint

Episode Sentence

Output dummy place

Pre-condition
Input dummy place

Post-condition

Cause

Solution

Output dummy place

Input dummy place

Post-condition

Cause

Solution

Output dummy place

Input dummy place

Output dummy place

Input dummy place

Fork

Output dummy place

Input dummy place

Join

Output dummy place

Input dummy place

Fork

Output dummy place

Input dummy place

Join

Loop Episode
<Id> DO <Episode Sentence>
WHILE {<Condition>}1

N

+ {Pre-condition}
+ {Post-condition}
+ {Constraints}

Post-condition

Constraint
Condition

Episode SentenceDummy Iteration

Output dummy place

Pre-condition

Input dummy place

Post-condition

Constraint
Condition

Episode SentenceDummy Iteration

Output dummy place

Pre-condition

Input dummy place

Output dummy place

Start

Dummy

Pre-condition
Constraint

Output dummy place

Start

Dummy

Pre-condition
Constraint

Final state
Context:
- {Post-condition}

Post-condition

Dummy

Finish

Input dummy place

Post-condition

Dummy

Finish

Input dummy place

Legend:
TransitionPlaceDummy TransitionDummy Place Place with token

Legend:
TransitionPlaceDummy TransitionDummy Place Place with tokenTransitionPlaceDummy TransitionDummy Place Place with token

Figure 25 - Mapping scenario constructs into Petri-Net elements.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

110

As the second step of the Method 1 (Figure 26), the sub Petri-Nets

generated from scenario elements are composed into a whole Petri-Net by Fusion

Place or Modified Fusion Place operations.

Definition 6.1 (Fusion Place): A sub Petri-Net can be fused with other sub

Petri-Net by fusing the output dummy place of the first sub Petri-Net into the input

dummy place of the last sub Petri-Net.

Definition 6.2 (Modified Fusion Place): Any sub Petri-Net can be fused

with other sub Petri-Net by fusing at least a common place among them. For

example, two sub Petri-Nets derived from different episodes can be fused, if they

have a common place that represents a common pre-condition.

Figure 26 – Transform Scenario into Petri-Net (Method 1).

4.3.2.
Integrating Petri-Nets

For every scenario and its related scenarios, we generate partial Petri-Nets

in order to integrate these partial Petri-Nets into a consistent whole Integrated

Petri-Net. The Integrated Petri-Net reflects exactly the original properties of the

synthesized Petri-Nets (Demonstrated in Section 4.3.4).

Method 1: Transform Scenario into Petri-Net
Input: Scenario S = (Title, Goal, Context, Resource, Actor, Episodes, Exception);
Output: Petri-Net PN = (P, T, F, W, M0);
Begin:

1. Clean Scenario S from unnecessary information (Pre-processing)
2. Generate a sub Petri-Net for scenario triggering: Apply Transforming Initial State rule (Table 15);
3. For every episode generate a sub Petri-Net:
→IF episode sentence starts with “#” THEN Apply Transforming Concurrency Construct rule (Table 17);
→IF episode is Simple THEN Apply Transforming Episode rule (Table 16);
→IF episode is Conditional THEN Apply Transforming Episode rule (Table 16);
→IF episode is Optional THEN Apply Transforming Episode rule (Table 16);
→IF episode is Loop THEN Apply Transforming Episode rule (Table 16);
→IF episode sentence ends with “#” THEN Apply Transforming Concurrency Construct rule (Table 17);
4. For every exception generate a sub Petri-Net:
→Apply Transforming Exception rule (Table 18);
5. Generate a sub Petri-Net for scenario completion: Apply Transforming Final State rule (Table 19);
6. Link sub Petri-Nets of exceptions to sub Petri-Nets of branching episodes;
→Apply Fusion Place to sub Petri Nets from episode and exception (Definition 6.1);
7. Link sub Petri-Nets between a fork and a join transitions as concurrent sub Petri-Nets;

→Apply Fusion Place to sub Petri-Nets from fork and episode (Definition 6.1);
→Apply Fusion Place to sub Petri-Nets from episode and join (Definition 6.1);

8. Compose the sub Petri-Nets into a complete Petri-Net:
→For every sub Petri-Net

→Apply Fusion Place operation, following the precedence order (Definition 6.1);
→Apply Modified Fusion Place operation (Definition 6.2);

9. FOR every input place of the first transition (initial state):
 →IF input place has not input arcs THEN Link last transition to the input place;
10. Return Petri-Net;

End

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

111

In the proposed scenario language, scenarios are related to other scenarios

by explicit sequential relationships (pre-condition, post-condition, constraint, sub-

scenario or exception). When a scenario is chosen to be a main scenario, and

translated into a main Petri-Net, the referenced scenarios (sequentially) are

mapped into input places (pre-conditions or constraints), output places (post-

conditions) or transitions (episodes’ sentence or exceptions’ solution).

 In this case, a main scenario is the starting point to find the related

scenarios.

As the first step of the method for integrating Petri-Nets (Method 2 in

Figure 27), each sequentially related scenario is translated into a Petri-Net. After

it, each one of these Petri-Nets must be replaced into the corresponding place or

transition of the main Petri-Net. Our first step is the substitution of places or

transitions.

Definition 6.3 (Substitution Transition): Any transition (not dummy) of a

Petri-Net can be replaced by any other Petri-Net. Then the input dummy place of

the transition is fused with the first input dummy place (Start) of the replacing

Petri-Net and the output dummy place of the transition is fused with the last

output dummy place (Finish) of the replacing Petri-Net.

Definition 6.4 (Substitution Input Place): Any input place (not dummy) of

a Petri-Net can be replaced by any other Petri-Net. Then the last output dummy

place (Start) of the replacing Petri-Net is fused with the input place.

Definition 6.5 (Substitution Output Place): Any output place (not

dummy) of a Petri-Net can be replaced by any other Petri-Net. Then the first input

dummy place (Start) of the replacing Petri-Net is fused with the output place.

Scenarios are also related to other scenarios by explicit and non-explicit

non-sequential relationships (Indistinct order or Concurrency).

Explicit non-sequential relationships among scenarios are described using

the structure for grouping non-sequential episodes (#<episodes series>#). If a

main scenario is mapped into a main Petri-Net, the explicit non-sequentially

related scenarios (episodes between a Concurrency Construct) are mapped into

transitions.

Non-explicit and non-sequential relationships among scenarios are found by

analyzing common actors or shared resources (See Section 4.1). If a main

scenario is mapped into a main Petri-Net, the interaction with non-explicit and

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

112

non-sequentially related scenarios is described by common pre-conditions or post-

conditions, these common conditions are mapped into input places or output

places.

As the second step of the method for integrating Petri-Nets (Method 2 in

Figure 27), each non-sequentially related scenario is translated into a Petri-Net.

Among the Petri-Nets, there are common places (with the same labels) that denote

the same pre-condition or post-condition, and they need to be uniquely

represented from the system point of view (Cheung et al., 2006). Our second step

is basically the substitution of transitions (episodes referencing explicit non-

sequential scenarios) and fusion of common places (non-explicit non-sequential

scenarios interact by common conditions).

Definition 6.6 (Concurrent Fusion Place): Any Petri-Net can be fused

with other Petri-Net by fusing at least a common place (from pre-condition or

post-condition) among them.

Figure 27 – Integrate Petri-Nets (Method 2).

4.3.3.
Petri-Net Example

For illustration, we applied the Methods 1 and 2 (Figure 26 and Figure 27)

to obtain the Petri-Nets and Integrated Petri-Nets of the “Online Broker System”.

Method 2: Integrate Petri-Nets
Input: Main Scenario S = (Title, Goal, Context, Resource, Actor, Episodes, Exception);
Output: Integrated Petri-Net IPN = (P, T, F, W, M0)
Begin:

1. Derive Main Petri-Net from the Main Scenario (Method 1);
2. Identify sequential relationships from the Main Scenario by Pre-condition. Post-condition,

Constraint, Sub-scenario or Exception;
3. Identify explicit non-sequential relationships from the Main Scenario by analyzing Concurrency

Constructs;
4. Identify non-explicit non-sequential relationships from the Main Scenario by common Pre-condition

or Post-condition;
5. Obtain a whole Integrated Petri-Net from the Main Petri-Net:

→For every scenario in sequentially related scenarios:
→Transform scenario into a Petri-Net (Method 1);
→IF current Petri-Net represents a Sub-scenario or Exception in Main Scenario THEN:

→Substitute the corresponding “Transition” of the Main Petri-Net (Definition 6.3);
→IF current Petri-Net represents a Pre-Condition or Constraint in Main Scenario THEN:

→Substitute the corresponding “Input Place” of the Main Petri-Net (Definition 6.4);
→IF current Petri-Net represents a Post-Condition in Main Scenario THEN:

→Substitute the corresponding “Output Place” of the Main Petri-Net (Definition 6.5);
→For every scenario in explicit non-sequentially related scenarios:

→Transform scenario into a Petri-Net (Method 1);
→Substitute the corresponding “Transition” of the Main Petri-Net (Definition 6.3);

→For every scenario in non-explicit non-sequentially related scenarios:
→Transform scenario into a Petri-Net (Method 1);
→Fuse the common places between the current Petri-Net and Main Petri-Net (Definition 6.6);

6. Return integrated Main Petri-Net;
End

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

113

In the “Online Broker System”, we choose the “Submit Order” scenario as

main scenario because it does not require any other scenario of the set of

scenarios and references to the most of scenarios of the system. By applying the

Method 1 (Figure 26), we obtain the Petri-Net for the “Submit Order” scenario. It

was derived by mapping the scenario components of the main execution flow –

episodes and exceptions. Figure 22 and Figure 23 depict the set of scenarios of the

“Online Broker System”, and Figure 28 (b) shows the Petri-Net for the “Submit

Order” scenario.

For “Submit Order” scenario (Figure 22 and Figure 23), 16 event

occurrences are identified (12 in the main flow – episodes and 4 in the exceptional

flows): T1 (The Customer loads the login page), T2 (The Broker System asks for

the Customer login information), T3 (The Customer enters her login information),

T4 (The Broker System checks the provided login information), T5 (The Broker

System displays an order page), T6 (The Customer creates a new Order), T7 (The

Customer adds an item to the Order), T8 (The Customer submits the Order), T9

(The Broker System broadcast the Order to the Suppliers), T10 (LOCAL

SUPPLIER BID FOR ORDER), T11 (INTERNATIONAL SUPPLIER BID FOR

ORDER), T12 (PROCESS BIDS), T1.1 (REGISTER CUSTOMER), T2.1 (The

Broker System displays a login timeout page), T4.1 (The Broker System displays

an alert message) and T8.1 (The Broker System displays an error message). We

construct a Petri-Net by creating transitions T1, T2,… , T11, T12 and T13 to

denote these events and appending to each transition input and output places to

denote: (1) internal dummy input and output places, or (2) input conditions

(exception’s cause or episode’s condition) and post-conditions. Additionally: (1)

two dummy transitions (Fork1 and Join1) are created for synchronization of

concurrent transitions T10 and T11; and (2) two dummy transitions are created to

denote the scenario triggering (T0) and the scenario completion (T13).

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

114

Figure 28 – Register Customer (a), Submit Order (b) and Process Bids (c) Petri-

Nets.

Revisiting the “Submit Order” scenario, exception 1.1 and episodes 10, 11

and 12 are detailed in other scenarios (exception and sub-scenario) like “Register

 a) b) c)
T1.1 – Register Customer T12 – Process Bids

Transition Place Place with token Dummy Transition

Transitions for: Local

Supplier Bid for Order and

International Supplier Bid for

Order.

Legend:

Legends for Transition Labels
T1.1.1 Customer selects registration operation

T1.1.2 Broker System asks for Customer name, date of birth and address
T1.1.3 Customer enters registration information

T1.1.4 Broker System validates Customer information

T1.1.5 Broker System generate login information for Customer

T1.1.4.1 Broker System displays registration failure page

T12.1 Customer examines the bid

T12.2 Customer signals the system to proceed with bid

T12.3 HANDLE PAYMENT

T12.4 System put an order with the selected bidder

Legends for Transition Labels
T1 The Customer loads the login page)

T2 The Broker System asks for the Customer login information

T3 The Customer enters her login information

T4 The Broker System checks the provided login information

T5 The Broker System displays an order page

T6 The Customer creates a new Order

T7 The Customer adds an item to the Order

T8 The Customer submits the Order

T9 The Broker System broadcast the Order to the Suppliers

T10 LOCAL SUPPLIER BID FOR ORDER

T11 INTERNATIONAL SUPPLIER BID FOR ORDER

T12 PROCESS BIDS

T1.1 REGISTER CUSTOMER

T2.1 The Broker System displays a login timeout page

T4.1 The Broker System displays an alert message

T8.1 The Broker System displays an error message

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

115

Customer”, “Local Supplier bid for order”, “International Supplier bid for order”

and “Process Bids”. It means that Petri-Nets should be generated for referenced

scenarios (Register Customer-T1.1, Local Supplier bid for order–T10,

International Supplier bid for order–T11 and Process Bids–T12) and replaced into

the main Petri-Net of “Submit Order”.

Figure 28 (a) and (c) show the Petri-Nets derived for like “Register

Customer” and “Process Bids” scenarios, and where must be substituted in

“Submit Order” Main Petri-Net. In Figure 28 (b), transitions T10 and T11

reference the “Local Supplier bid for order” and “International Supplier bid for

order” scenarios; they are executed in a non-sequential order and must be replaced

in the corresponding transitions.

Figure 29 shows the Integrated Petri-Net of “Submit Order” scenario. The

sequentially related scenarios (T1.1. REGISTER CUSTOMER and T12.

PROCESS BIDS) are substituted by the Petri-Nets depicted in Figure 28 (a) and

(c).

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

116

Figure 29 - Integrated Petri-Net of “Submit Order”.

T10 - Local Supplier T11 - International Supplier

Transition Place Place with token Dummy Transition

Legend:

Legends for Transition Labels
T1 The Customer loads the login page)

T2 The Broker System asks for the Customer login

information
T3 The Customer enters her login information

T4 The Broker System checks the provided login

information
T5 The Broker System displays an order page

T6 The Customer creates a new Order

T7 The Customer adds an item to the Order

T8 The Customer submits the Order

T9 The Broker System broadcast the Order to the

Suppliers
T10 LOCAL SUPPLIER BID FOR ORDER

T11 INTERNATIONAL SUPPLIER BID FOR ORDER

T12 PROCESS BIDS

T1.1 REGISTER CUSTOMER

T2.1 The Broker System displays a login timeout page

T4.1 The Broker System displays an alert message

T8.1 The Broker System displays an error message

T10.1 Local Supplier receives the Order and examines it

T10.2 Local Supplier determines the applicable taxes to the

order and creates a bid

T10.3 Local Supplier submits a Bid for the Order

T10.4 The Broker System sends the Bid to the Customer

T10.1.1 Local Supplier passes on the Order

T11.1 International Supplier receives the Order and examines

it

T11.2 International Supplier submits a Bid for the Order

T11.3 The Broker System sends the Bid to the Customer

T11.1.1 International Supplier passes on the Order

T11.1.2 International Supplier passes on the Order

Transition
for: Register
Customer

Transition
for: Process
Bids

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

117

4.3.4.
Preservation of Properties

We believe that Petri-Net derived from a scenario (Method 1 - Figure 26)

preserves the event sequences and conditions described within a scenario, as we

explain next.

Demonstration 1: A scenario describes situations (Leite et al., 2000) in the

form of episodes or exceptions. From a given initial state (context with all

necessary resources, pre-conditions and constraints), the execution of an episode

or the treatment of an exception leads into another state. According to the

transformation method (Method 1 - Figure 26), the execution of a episode or the

treatment of a exception is denoted by the firing of a Petri-Net transition, which

changes a marking M (source state) to M’ (target state). Each transition is labeled

with the sentence or solution performed by an episode or exception, respectively.

For each transition translated from an episode or exception: (1) Input places are

created to denote the locations of its pre-conditions, causes and constraints; (2)

Output places are created to denote the location of its post-conditions. Therefore,

the execution of scenario episodes or exceptions is modeled by firing a sequence

of Petri-Net transitions.

Moreover, the properties of the Petri-Nets derived from related scenarios are

preserved when they are synthesized into a whole Petri-Net, because the synthesis

procedure (Method 2 - Figure 27) does not introduce new non-deterministic

situations (Non-determinism is the main source of synchronization defects), as we

explain next.

Demonstration 2: A Petri-Net is the formal representation of a scenario. We

integrate the related Petri-Nets in order to obtain a partial initial system design.

The integrated Petri-Net reflects exactly the original properties of the synthesized

Petri-Nets. Among the synthesized Petri-Nets, there are common places (with the

same labels) that denote the same conditions or states, and there are places or

transitions that reference (in their labels) other Petri-Nets. Our integration method

(Method 2 - Figure 27) is basically the fusion of common places and the

substitution of places or transitions by the corresponding Petri-Nets: (1) the

substitution (Definition 6.3, 6.4 and 6.5) of places or transitions by sequentially

related Petri-Nets do not create any new arcs between these Petri-Nets, i.e. the

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

118

substitution of places or transitions is done by fusing with the first “input dummy

place (Start)” or the last “output dummy place” (Finish) of the replacing Petri-

Net; and (2) the fusion (Definition 6.6) of concurrently related Petri-Nets does not

create any new arcs between these Petri-Nets, i.e. the fusion of places is done by

fusing common places.

Figure 30 illustrates the application of substitution input place and

concurrent fusion place operations to obtain two integrated Petri-Nets: (a) First

example, a constraint of a scenario S1 is detailed in other scenario S2 (sequential

relationship); and (b) Second example, two scenarios S1 and S2 interact

concurrently because the post-condition of the first one S1 has the same label that

the pre-condition of the second one S2.

Figure 30 - Substitution input place (a) and concurrent fusion place (b).

4.4.
Analyzing Scenarios

The process of analysis involves checking some structural and behavioral

properties in Scenario descriptions and equivalent Petri-Nets, respectively. The

analysis of these properties can be addressed through the use of static and

dynamic analysis techniques, or the combination of them.

In order to detect defects related to Unambiguity and Completeness, our

analysis approach performs a static analysis. Unambiguity analysis detects

ambiguous terms or phrases within internal scenario sentences. Completeness

analysis checks the style and content of internal scenario elements, and detects

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

119

defects in the relationships among related scenarios. Some tasks related to these

activities can be supported by NLP techniques.

In order to detect defects related to behavioral properties, our analysis

approach performs a dynamic analysis. The analysis of the behavior of a set of

scenarios can detect inconsistency or incorrectness indicators, such as deadlock

situations. Consistency analysis detects some defects due to non-determinism and

synchronization issues, we have made use of Place-Transition Petri-Nets (Murata,

1989) for analysis of: (1) static properties like Correct Token Passing and Fully

Connected (related to Feasibility); and (2) dynamic properties like Determinism,

Boundedness, Reversibility and Deadlock free (related to Non-interferential,

Boundedness, Reversibility and Liveness).

A Quality Model for Scenarios and heuristics to detect defect indicators that

hurt Unambiguity, Completeness and Consistency in scenarios is presented in

Chapter 3. Below we detail the steps for Scenarios analysis.

4.4.1.
Unambiguity Analysis

Natural language plays an important role in scenario specifications because

scenario elements are described using NL. Due to the inherent ambiguity, the use

of NL is a critical issue. NLP techniques can be used for the linguistic analysis of

NL scenario descriptions and search defect indicators that hurt Unambiguity.

These indicators can be grouped in categories (Vagueness, Subjectiveness,

Optionality, Multiplicity, Quantifiability, Readabiity, Minimality, Weakness and

Implicitly) and detected by lexical analysis. Readabiity and Minimality contributes

positively to Unambiguity.

To evaluate Readability, we use the Coleman-Liau Formula readability

metric. This metric is based on the number of the letters, words and sentences of a

requirement (Wilson et al., 1997).

Coleman-Liau Formula readability metric: (5.89* letters/words-

0.3*sentences/(100*words)-15.8]). The reference value of this formula for an

easy-to-read technical document is 27.60, if it is < 17.10 and > 55.80 the

document is difficult-to-read.

In scenario, the evaluation of properties related to unambiguity is performed

by reading the different scenario elements (typically involving events: title, goal,

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

120

episodes and exceptions), and searching for defect indicators (stored in indicators

dictionaries) that contribute (positively or negatively) to Unambiguity: Vagueness,

Subjectiveness, Optionality, Multiplicity, Quantifiability, Minimality, Weakness

and Implicitly (See Table 7, Chapter 3).

A summary of unambiguity evaluation of Scenario elements is outlined

below in Method 3 (Figure 31). The detected defects are classified as Warning

(See Section 4.5).

Figure 31 – Unambiguity Analysis (Method 3).

Method 3: Analyze Unambiguity
Input: Scenario S = (Title, Goal, Context, Resource, Actor, Episodes, Exception);
 Ambiguous Indicators A = {Vagueness, Subjectiveness, Optionality, Multiplicity, Quantifiability, Weakness, Implicitly };
Output: Feedback F = (Informations, Warnings, Errors)
Begin:

1. Evaluate Readability index:
→IF Readability Index of Title > 55.8 THEN Add “Readability: Title is difficult-to-read” to W;
→For every Episode in episodes of Scenario S:

→IF Readability Index of Sentence > 55.8 THEN Add “Readability: Episode is difficult-to-read” to W;
→For every Exception in exceptions of Scenario S:

→IF Readability Index of Solution > 55.8 THEN Add “Readability: Exception is difficult-to-read” to W;
2. Evaluate Minimality:

→IF Title contains a Text after a not minimal term THEN Add “Minimality: Title describes an ambiguous situation” to W;
→For every Episode in episodes of Scenario S:

→IF Sentence contains a Text after a not minimal term THEN Add “Minimality: Episode describes a non-minimal sentence” to W;
→For every Exception in exceptions of Scenario S:

→IF Solution contains a Text after a not minimal term THEN Add “Minimality: Exception describes a non-minimal solution” to W;
3. Evaluate Vagueness:

→IF Title contains a Vague term THEN Add “Vagueness: Title describes an ambiguous situation” to W;
→For every Episode in episodes of Scenario S:

→IF Sentence contains a Vague term THEN Add “Vagueness: Episode describes an ambiguous sentence” to W;
→For every Exception in exceptions of Scenario S:

→IF Solution contains a Vague term THEN Add “Vagueness: Exception describes an ambiguous solution” to W;
4. Evaluate Subjectiveness:

→IF Title contains a Subjective term THEN Add “Subjectiveness: Title describes an ambiguous situation” to W;
→For every Episode in episodes of Scenario S:

→IF Sentence contains a Subjective term THEN Add “Subjectiveness: Episode describes an ambiguous sentence” to W;
→For every Exception in exceptions of Scenario S:

→IF Solution contains a Subjective term THEN Add “Subjectiveness: Exception describes an ambiguous solution” to W;
5. Evaluate Optionality:

→IF Title contains a Optional term THEN Add “Optionality: Title describes an ambiguous situation” to W;
→For every Episode in episodes of Scenario S:

→IF Sentence contains a Optional term THEN Add “Optionality: Episode describes an ambiguous sentence” to W;
→For every Exception in exceptions of Scenario S:

→IF Solution contains a Optional term THEN Add “Optionality: Exception describes an ambiguous solution” to W;
6. Evaluate Multiplicity:

→IF Title contains a Multiple term THEN Add “Multiplicity: Title describes an ambiguous situation” to W;
→For every Episode in episodes of Scenario S:

→IF Sentence contains a Multiple term THEN Add “Multiplicity: Episode describes an ambiguous sentence” to W;
→For every Exception in exceptions of Scenario S:

→IF Solution contains a Multiple term THEN Add “Multiplicity: Exception describes an ambiguous solution” to W;
7. Evaluate Quantifiability:

→IF Title contains a Quantifiable term THEN Add “Quantifiability: Title describes an ambiguous situation” to W;
→For every Episode in episodes of Scenario S:

→IF Sentence contains a Quantifiable term THEN Add “Quantifiability: Episode describes an ambiguous sentence” to W;
→For every Exception in exceptions of Scenario S:

→IF Solution contains a Quantifiable term THEN Add “Quantifiability: Exception describes an ambiguous solution” to W;
8. Evaluate Weakness:

→IF Title contains a Weak term THEN Add “Weakness: Title describes an ambiguous situation” to W;
→For every Episode in episodes of Scenario S:

→IF Sentence contains a Weak term THEN Add “Weakness: Episode describes an ambiguous sentence” to W;
→For every Exception in exceptions of Scenario S:

→IF Solution contains a Weak term THEN Add “Weakness: Exception describes an ambiguous solution” to W;
9. Evaluate Implicitly:

→IF Title contains an Implicit term THEN Add “Implicitly: Title describes an ambiguous situation” to W;
→For every Episode in episodes of Scenario S:

→IF Sentence contains an Implicit term THEN Add “Implicitly: Episode describes an ambiguous sentence” to W;
→For every Exception in exceptions of Scenario S:

→IF Solution contains a Implicit term THEN Add “Implicitly: Exception describes an ambiguous solution” to W;
10. Return Feedback F = {W};

End

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

121

Following are examples of Unambiguity defects pointed out by our analysis

approach in the “Online Broker System”; the underlined words or phrases are the

indicators detected by our approach to point out the episode sentence containing

the defect:

 Submit Order scenario: Episode 1. The Customer enters her login

information (Implicitly);

 Submit Order scenario: Episode 4. The Broker System checks the

provided login information (Vagueness);

 Local Supplier scenario: Episode 3. Local Supplier receives the Order

and examines it (Multiplicity);

 Handle Payment: Episode 2. The Customer provides her Credit Card

information (Implicitly).

4.4.2.
Completeness Analysis

To evaluate Completeness, we detect missing information in internal (intra-

scenario) and external aspects (inter-scenario) of scenarios. The intra-scenario

properties include: Atomicity, Simplicity, Uniformity, Usefulness and

Conceptually Soundness. The inter-scenario properties include: Integrity,

Coherency and Uniqueness. Other important property related to completeness is

Feasibility (See Chapter 3).

Thus, the syntax and semantic of each element in scenario and its

relationships must be described as established in the scenario model and grammar

(Table 13).

The violation of properties related to completeness is detected by traversing

every scenario element (Title, Goal, Context, Resource, Actor, Episodes,

Exception), and following the checklist with verification heuristics described in

Chapter 3 (Table 8, Table 9, Table 10 and Table 11). For each heuristic, we

defined a set of common defect indicators.

In order to search defect indicators that hurt Completeness properties, we

classify the defects detection heuristics according to the analysis strategy used by

them, i.e., some of the heuristics verify that every scenario element contains its

relevant components (Lexical), others verify that every scenario elements and its

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

122

internal components follows the grammar rules (Syntactic). In Chapter 5 is

detailed the classification of each one of the defects detection heuristics.

4.4.2.1.
Lexical Analysis

To detect lexical defects that hurt Uniformity it is enough to verify the

conformance of scenario elements to the scenario model. Figure 32 illustrates

examples of lexical analysis of an episode (a) and an exception (a) described in

the “Online Broker System” scenarios.

<Simple Episode>

<Episode Sentence>

Customer examines the bid

a) episode main components
1.

<Exception>

<Cause>

IF the order is empty THEN The Broker System displays an error message

b) exception main components
8.1.

<Id><Id> <Solution>

Figure 32 – Lexical analysis of simple episode (a) and exception (b) elements.

To detect lexical defects that hurt Atomicity, Simplicity, Usefulness,

Conceptually Soundness, Integrity and Coherency, it is enough to search for

multiplicity indicators in the scenario title, to count the number of episodes in

each scenario, to check that every actor or resource is used in episodes, to verify

the presence of Linking-verb or State-Verb in conditions (pre-condition, post-

condition, episode condition and exception cause), to verify the existence of

referenced scenarios or pre-conditions, and to check the coherency between

related scenario pre-conditions (geographical location and temporal location),

respectively.

Following are examples of Completeness lexical defects pointed out by our

analysis approach in the “Online Broker System”; the underlined words or phrases

are the indicators detected by our approach to point out the sentence containing

the defect:

 International Supplier bid for order: Exception 1.1 IF The Order

includes items restricted for exportation THEN International Supplier

passes on the Order (Soundness - Missing Linking-Verb or State-Verb);

 Submit Order: Num. episodes > 10 (Usefulness - Too long scenario);

 Submit Order: Context Pre-condition - The Broker System is online

(Integrity – It is an uncontrollable fact does not satisfied by a Post-

condition of other scenario);

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

123

 Process Bids: Actor – Broker System (Usefulness - never participates in

episodes).

4.4.2.2.
Syntactical Analysis

To detect syntactic defects that hurt Atomicity, Simplicity, Usefulness,

Conceptually Soundness and Uniqueness, it is necessary to check that every

sentence contains significant information like the main Verb, Direct Object

modified, and optionally the Subject and Indirect Objects. Considering that a

scenario sentence (typically involving events: title, episode sentence and

exception solution) performs an action (Action-Verb) that can use or modify

resources (Objects) and be executed by actors (Subjects), there are three basic

types of structured sentences: 1) verb-object (for writing the scenario title or

reference another scenario), 2) subject-verb-object, and 3) subject-verb-object-

indirect-object (for writing episode sentences or exception solutions).

Phrase-structure parsing or dependency parsing (Stanford, 2015) strategies

can be used to identify the significant information of scenario sentences. The

result of the parsing is a parse tree, in which the sentence is parsed into the

Subject or Object of a Verb; then the non-leaf nodes are Part-of-Speech (Klein and

Manning, 2003) tags where “NN” and “VB” represents the noun phrase and verb

phrase respectively; the leaf nodes are tokenized words of the original textual

sentence. Stanford (2015) tool is a program that could be used to analyze the

grammatical structure of sentences.

Figure 33 illustrates the parse tree for sentences described in the “Online

Broker System” scenarios.

Figure 33 – Parse tree for verb-object (a), subject-verb-object (b) and subject-verb-
object-indirect-object (c) sentences.

Following are examples of Completeness syntactic defects pointed out by

our analysis approach in the “Online Broker System”; the underlined words or

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

124

phrases are the indicators detected by our approach to point out the sentence

containing the defect:

 Local Supplier bid for order: Episode 1. Local Supplier receives the

Order and examines it (Simplicity - Contains more than one Action-Verb);

 International Supplier bid for order: Episode 3. The Broker System

sends the Bid to the Customer (Usefulness – Actor/Resource mentioned in

episode is not included in the Actor/Resource element);

 Process Bids: Episode 4. System put an order with the selected bidder

(Simplicity – Missing Action-Verb in Present Tense form);

 Local Supplier bid for order: “Local Supplier bid for order” and

“International Supplier bid for order” (Uniqueness – They are potentially

duplicated! Their Titles share the same Action-Verb and direct Object).

Figure 34 – Completeness Analysis (Method 4).

Method 4: Analyze Completeness
Input: Scenario S = (Title, Goal, Context, Resource, Actor, Episodes, Exception);

Completeness Defect Indicators C = {Atomicity, Simplicity, Uniformity, Usefulness, Conceptually Soundness,
Integrity, Coherency, Uniqueness, Feasibility};

Output: Feedback F = (Informations, Warnings, Errors)
Begin:

1. IF Title describes multiple situations THEN Add “Atomicity: Title must express only a situation” to W;
2. IF Goal describes multiple situations THEN Add “Atomicity: Goal must express only a situation” to W;
3. For each Scenario Element in Scenario S:
→IF Scenario Element does not follow the scenario model THEN Add “Uniformity: Scenario Element must follow the

scenario model” to E;
4. For every Episode in episodes of Scenario S:

→IF Episode is not Readable THEN Add “Simplicity: Episode is difficult-to-read” to W;
→IF Episode is not consistent with Actors and Resources THEN Add “Usefulness: Episode must be consistent

with actors and resources” to W;
→IF Episode does not perform actions and change states THEN Add “Conceptually Soundness: Episode should

perform actions and change states” to W;
5. For every Exception in exceptions of Scenario S:

→IF Exception is not Readable THEN Add “Simplicity: Exception is difficult-to-read” to W;
→IF Exception is not consistent with episodes THEN Add “Usefulness: Exception must be consistent with

branching episode” to W;
→IF Exception does not perform actions and change states THEN Add “Conceptually Soundness: Exception

should perform actions and change states” to W;
6. Identify sequential relationships of the Scenario S by Pre-condition. Post-condition, Constraint, Sub-scenario or

Exception;
7. For every Related Scenario in Sequentially Scenarios:

→IF Related Scenario does not exist in the set of scenarios THEN Add “Integrity: Related Scenario should exist
in the set of scenarios” to E;

→IF Related Scenario does not use a common terminology with the Scenario S THEN Add “Coherency: Related
Scenario should use a common terminology, e.g. pre-conditions, temporal location and geographical location
should be coherent with the main Scenario” to I;

8. Get the set of Scenarios of the Project;
9. For every Scenario SS in the set of Scenarios of the Project:

→IF Scenario SS is duplicated of Scenario S THEN Add “Uniqueness: scenarios should not share the same
Title, Goal or Episodes” to W;

10. Derive Petri-Net PN from Scenario S (Method 1);
11. IF there are places or transitions that do not interact with others in PN THEN Add “Feasibility: Petri-Net contains

isolated sub nets” to E;
12. Return Feedback F;

End

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

125

A summary of Completeness evaluation of a Scenario and its related scenarios is

outlined in Method 4 (Figure 34). The detected defects are classified as

Information, Warning or Error (See Section 4.5).

4.4.3.
Consistency Analysis

According to Denger et al (2005), the most difficult defects to detect by

static analysis are consistency defects; these defects can be detected with much

effort using reading or inspection techniques. In order to address this issue, we

integrated the dynamic analysis.

Dynamic analysis of scenarios can be performed by rigorous analysis

techniques, i.e., from a main scenario, a set of related scenarios (sequentially and

non-sequentially related) are identified and translated into executable models

(Petri-Nets), which are executed in a formal analysis environment like PIPE2

(2015).

To evaluate Consistency, we integrate the Petri-Nets corresponding to

related scenarios into the Petri-Net derived from a main scenario, and detect

wrong information in the Integrated Petri-Net. The consistency related properties

include: Non-interferential, Boundedness, Reversibility and Liveness (See

Chapter 3).

The violation of properties related to consistency can be detected by

generating the reachability graph of the equivalent Integrated Petri-Net, and

analyzing this graph following the checklist with verification heuristics described

in Chapter 3 (Table 12). For each heuristic, we identified a set of common defect

indicators.

4.4.3.1.
Managing the State Explosion

State explosion issue is a serious problem when applying Petri-Net analysis

to large systems. A contribution of this thesis is a MULTI-STEP consistency

analysis method to manage this problem. The reachability analysis of an

Integrated Petri-Net can be performed in a compositional way, where: (1) Petri-

Nets corresponding to sequentially related scenarios are removed from the

Integrated Petri-Net, (2) Petri-Nets corresponding to non-sequentially related

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

126

scenarios are preserved into the Integrated Petri-Net because they might interact

among them, and (3) the resulting Petri-Nets are analyzed separately.

In this method, the Integrated Petri-Net is divided into a set of Petri-Nets

(Petri-Nets corresponding to sequentially related scenarios and the Integrated

Petri-Net) that preserves the properties and concurrency characteristics of the

Integrated Petri-Net.

It is possible because the process to obtain an Integrated Petri-Net from a

main scenario and its relationships does not introduce new arcs when a Petri-Net

corresponding to a related scenario is fused or substituted into a place or transition

of the Integrated Petri-Net (Method 2 - Figure 27, Section 4.3.2).

A summary of the MULTI-STEP Consistency evaluation of an equivalent

Petri-Net is outlined below in Method 5 (Figure 35). The detected defects are

classified as Information, Warning or Error (See Section 4.5).

Figure 35 – Consistency Analysis (Methoid 5).

This MULTI-STEP method reduces the state explosion problem by: (1)

increasing the feasibility of Petri-Nets and (2) enabling the verification of

Method 5: Analyze Consistency
Input: Scenario S = (Title, Goal, Context, Resource, Actor, Episodes, Exception);

Consistency Defect Indicators C = {Non-interferential, Boundedness, Reversibility, Liveness };
Output: Feedback F = (Informations, Warnings, Errors)
Begin:

1. Derive the Main Petri-Net RPN from the Root Scenario S (Method 1);
2. Identify sequential relationships from the Main Scenario by Pre-condition. Post-condition,

Constraint, Sub-scenario or Exception (Section 4.1);
3. Identify explicit non-sequential relationships from the Main Scenario by analyzing Concurrency

Constructs (Section 4.1);
4. Identify non-explicit non-sequential relationships from the Main Scenario by common Pre-

condition or Post-condition (Section 4.1);
5. For every Sequentially Related Scenario:

→Derive Petri-Net PN (Method 1);
→Add the Petri-Net PN into a Set of Petri-Nets SPN;

6. For every Non-Sequentially Related Scenario:
→Derive Petri-Net PN (Method 1);
→Integrate the Petri-Net PN into the Main Petri-Net RPN (Method 2);

7. Add the Integrated Petri-Net RPN into the Set of Petri-Nets SPN;
8. For every Petri-Net PN in the Set of Petri-Nets SPN:

8.1. Generate the Reachability Graph of the Petri-Net PN;
8.2. Analyze the Reachability Graph of the Petri-Net PN:
→IF Petri-Net PN contains simultaneously enabled transitions THEN Add “Non-interferential:

Contains simultaneously enabled transitions” to I;
→IF Petri-Net PN contains overflowed places THEN Add “Boundedness: The number of

elements in a place exceeds a finite capacity” to W;
→ IF Petri-Net PN is not reversible THEN Add “Reversibility: Error recovery is not possible” to W;
→ IF Petri-Net PN contains a path to deadlock THEN Add “Liveness: Exist a short path to

deadlock” to W;
→ IF Petri-Net PN contains never enabled transitions THEN Add “Liveness: Exist not enabled

transitions” to W;
9. Return Feedback F;

End

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

127

properties which may fail on Integrated Petri-Net due to a state explosion

problem.

In the “Online Broker System”, the main scenario is the “Submit Order”

scenario, and the Suppliers’ scenarios are executed concurrently (non-sequential),

as shown in Figure 22 and Figure 23.

Figure 36 depicts how the Petri-Nets derived from non-sequentially related

scenarios (LOCAL SUPPLIER BID FOR ORDER and INTERNATIONAL

SUPPLIER BID FOR ORDER) are substituted into the corresponding transitions

(T10 and T11) of the Petri-Net derived from the “Submit Order” scenario. The

Petri-Nets corresponding to REGISTER CUSTOMER and PROCESS BIDS

transitions (T1.1 and T12) are not integrated because they are sequentially related

to “Submit Order” scenario, and they can be analyzed separately because they do

not interact concurrently with the main scenario (avoiding the state explosion

issue).

From the Integrated Petri-Net in Figure 36, we: a) generate the reachability

graph, and b) apply the reachability analysis technique to detect consistency

defects. Figure 37 depicts the reachability graph and results of the reachability

analysis for “Submit Order” scenario using the PIPE2 (2015). Nodes are reachable

states; arcs are transitions performed to reach a state, and S0 is the initial state.

The reachability analysis of the integrated Petri-Net PN of “Submit Order”

scenario (Figure 22 and Figure 23) using the PIPE2 (2015) tool pointed out the

following Consistency defects in the “Online Broker System”:

 Non bounded because it presents overflowed places (Local Supplier has

bidden, International Supplier has bidden);

 Non live because the firing sequence (SUBMIT ORDER) T0  T1  T2

 T3  T4  T5  T6  T7  T8  T9  Fork_1  (LOCAL

SUPPLIER BID FOR ORDER) T10.0  T10.1  T10.2  T10.3 

T10.4  T10.5  (INTERNATIONAL SUPPLIER BID FOR ORDER)

T11.0  T11.1  T11.2  T11.3  T11.4  (SUBMIT ORDER)

Join_1  T12  T12  T13  T0  T1  T2  T3  T4  T5  T6

 T7  T8  T9  Fork_1  (LOCAL SUPPLIER BID FOR

ORDER) T10.0  T10.1  T10.2  T10.3  T10.4  T10.5  (

INTERNATIONAL SUPPLIER BID FOR ORDER) T11.0  T11.1 

T11.1.1 is a shortest path to Deadlock;

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

128

 Non reversible, because it is not bounded, not safe and not live. There is a

deadlock when the “The Order includes items restricted for exportation”

in the “International Supplier Bid for Order” scenario.

Figure 36 – Integrating “Suppliers” Petri-Nets into the Petri-Net of “Submit Order”.

T11 – International Supplier Bid for Order

Transition Place Place with token Dummy Transition

a) b) c)

Legend:

T10 – Local Supplier Bid for Order

Legends for Transition Labels
T1 The Customer loads the login page)

T2 The Broker System asks for the Customer login information

T3 The Customer enters her login information

T4 The Broker System checks the provided login information

T5 The Broker System displays an order page

T6 The Customer creates a new Order

T7 The Customer adds an item to the Order

T8 The Customer submits the Order

T9 The Broker System broadcast the Order to the Suppliers

T10 LOCAL SUPPLIER BID FOR ORDER

T11 INTERNATIONAL SUPPLIER BID FOR ORDER

T12 PROCESS BIDS

T1.1 REGISTER CUSTOMER

T2.1 The Broker System displays a login timeout page

T4.1 The Broker System displays an alert message

T8.1 The Broker System displays an error message

Legends for Transition Labels
T10.1 Local Supplier receives the Order and examines it

T10.2 Local Supplier determines the applicable taxes to the order and

creates a bid

T10.3 Local Supplier submits a Bid for the Order

T10.4 The Broker System sends the Bid to the Customer

T10.1.1 Local Supplier passes on the Order

T11.1 International Supplier receives the Order and examines it

T11.2 International Supplier submits a Bid for the Order

T11.3 The Broker System sends the Bid to the Customer

T11.1.1 International Supplier passes on the Order

T11.1.2 International Supplier passes on the Order

P<x><y> are input or output dummy places

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

129

Figure 37 – Reachability graph (a) and Reachability analysis results (b) of “Submit
Order” scenario.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

130

4.4.4.
Correctness Analysis

Correctness is the main quality in scenarios, and it is difficult to evaluate

and achieve because it depends on semantic analysis of scenarios and user’s

satisfaction. To address some issues related to the correctness of scenarios, we

could formalize the scenario descriptions using formal methods or analyze

semantically the information contained in sentences described within scenarios.

Formal methods are a powerful means to evaluate scenarios because they

provide a theoretical framework in which erroneous situations could be predicted.

However, specific skills are needed, and this increases their application cost.

The use of NLP techniques could help in identifying the syntactic

information of sentences, i.e. NLP techniques can identify Part-of-Speech (POS)

tags like “Nouns” and “Verbs” in textual sentences. However, it is impossible to

detect semantic defects with high precision (Lucassen et al., 2015).

In this work, NLP techniques (syntactic analysis) and Formal methods

(Petri-Nets) are used for detecting defects that hurt Completeness and Consistency

qualities, respectively. The use of these techniques can contribute positively to the

Correctness of scenarios.

In our analysis approach, we introduced a novel perception of correctness

and its complex relationships with unambiguity, completeness and consistency

describing it as a quality that should be satisficed by contributions of related

qualities or properties (See Chapter 3).

4.5.
Generating Feedback

By combining static and dynamic analysis techniques, we are able to detect

defects that hurt the properties related to unambiguity, completeness and

consistency qualities, and, consequently address the defects that hurt Correctness

of scenario-based specifications.

In Table 20, we summarize how the defects are detected and classified by

our analysis approach (Method 3, 4 and 5). These defects are detected by

heuristics that implement Lexical, Syntactical or Reachability analysis strategies

and classified as: Information, Warning or Error. Implementation details of these

heuristics are presented in Chapter 5 (Section 5.3.5). Information reveals that the

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

131

requirements engineer may have forgotten to specify some information related to

a scenario element. Warning reveals that the requirements engineer may have

introduced some confusing information or forgotten to inform and important

scenario element. Error reveals that the requirements engineer may have

introduced wrong information related to a scenario element.
Table 20 - Scenario Defects Classification

Quality Property Heuristic Analysis Strategy Defect Category
Vagueness 1 Lexical Warning

Subjectiveness 1 Lexical Warning

Optionality 1 Lexical Warning
Weakness 1 Lexical Warning

Multiplicity 1 Lexical Warning

Implicitly 1 Lexical Warning

Quantifiability 1 Lexical Warning

Unambiguity

Readability 1 Lexical Warning
1 Lexical Warning
2 Lexical Warning

Atomicity

3 Syntactic Warning
1 Syntactic Warning
2 Syntactic Warning
3 Lexical Information
4 Lexical Warning
5 Lexical Warning

Simplicity

6 Lexical Warning
Uniformity 1 Lexical Warning

1 Lexical Warning
2 Syntactic Warning
3 Lexical Warning
4 Syntactic Warning
5 Lexical Warning

Usefulness

6 Lexical Warning
1 Syntactic Warning
2 Semantic Warning
3 Semantic Warning
4 Syntactic Warning
5 Lexical Information
6 Lexical Information
7 Lexical Information
8 Syntactic Warning

Conceptually Soundness

9 Lexical Information
1 Lexical Error
2 Lexical Information

Integrity

3 Lexical Information
1 Semantic Warning
2 Lexical Warning

Coherency

3 Lexical Warning
1 Lexical Warning
2 Lexical Warning
3 Lexical Warning
4 Lexical Warning

Uniqueness

5 Syntactic Warning
1 Lexical Error

Completeness

Feasibility
2 Lexical Error

Non-interferential 1 Reachability analysis Information
Boundedness 1 Reachability analysis Warning
Reversibility 1 Reachability analysis Warning

Consisyency

Liveness 1 Reachability analysis Warning

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

132

The presence of defects classified as Information, Warning or Error is

likely, although not conclusively, to be incorrect and must be fixed. Some of these

defects can have been introduced on purpose by requirements engineers and that

the final decision can be made only in the next software development activities.

4.5.1.
Traceability between Petri-Net and Scenario

Every transition in a Petri-Net denotes an event occurrence (episode

sentence or exception solution) in its corresponding scenario. Every place denotes

the location of a pre-condition, post-condition, cause or constraint. If event labels,

condition labels and constraint labels are assigned to these Petri-Net transitions

and places accordingly; then, defects in Petri-Net can be translated to defects in

scenario:

 Non-interferential: Simultaneous enabled transitions represent

simultaneous enabled episode sentences or exception solutions;

 Boundedness: An overflowed place represents a pre-condition, post-

condition, cause or constraint;

 Liveness: A path to deadlock represents an ordered sequence of episode

sentences or exception solutions from scenario initial state;

4.6.
Recommending Fixes for Defects

The final activity is that of giving advice to requirements engineers about

the defect detected by our scenario analysis approach. Given the detailed

information provided by our scenario analysis approach (e.g., it indicates the

source of the defect), we have developed a rule-based heuristic as part of our

scenario analysis approach in order to recommend fixes to requirements

engineers, so that they can review scenario descriptions and deal with defects that

hurt the properties related to unambiguity, completeness and consistency via

refactoring of scenarios. A similar strategy based on recommendation tables was

proposed by Rago et al. (2014).

Below, we list some general heuristics for generating useful

recommendations. Table 21, Table 22, Table 23 and Table 24 show the

recommendation to be provided by our analysis approach if some defect indicator

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

133

is found within internal scenario elements or scenario’s relationships. The last

three columns of the table contain the property evaluation heuristic, defect

indicators detected by the heuristic, and the recommendation given to the

requirements engineers under the given defect indicator. It is up to the

requirements engineers to decide whether a defect is correctly detected with our

automated analysis approach and if they should follow the recommendation to fix

that defect.
Table 21 – Recommendations for Analyzing Unambiguity Properties.

Property Heuristic Indicator Recommendation
Vagueness 1 A scenario <sentence> contains a vague term. Remove the vague term

Subjectiveness 1 A scenario <sentence> contains a subjective term. Remove the subjective term

Optionality 1 A scenario <sentence> contains a optional term. Remove the optional term

Weakness 1 A scenario <sentence> contains a weak term. Remove the weak term

Multiplicity 1 A scenario <sentence> contains a multiple term. Split the sentence into multiple sentences
Implicitly 1 A scenario <sentence> contains an implicit term. Remove the implicit term

Quantifiability 1 A scenario <sentence> contains a quantifiable term. Remove the quantifiable term

Minimality 1 A scenario <sentence> contains a Text after a not
minimal term.

Split the sentence into multiple sentences

Readability 1 A scenario <sentence> is difficult-to-read. Check that sentence contains significant
information like the main verb, direct
object and optionally the subject

Table 22 – Recommendations for Analyzing Completeness (Intra-Scenario).
Property Heuristic Indicator Recommendation

1 The scenario Title contains a multiple term. Remove and, or, and/or terms
2 The scenario Goal contain a multiple term. Remove and, or, and/or terms

Missing Action-Verb in Title Inform an action-verb in infinitive form

Atomicity

3
Missing Object in Title Inform an object
Episode/Exception contains more than one
Action-Verb

Split the sentence into multiple sentences

Episode/Exception contains more than one
Subject

Split the sentence into multiple sentences

Missing Subject in Episode/Exception IF sentence do not reference another scenario
THEN inform a subject

1

Missing Object in Episode/Exception Inform an object
2 The Action-verb is not in the third form in

Episode/Exception
Use an action-verb in the present simple tense
and active form

3 Title contains text between brackets Remove unnecessary information between
brackets

Duplicated Episode Id Remove or re-write one episode 4
Duplicated Episode sentence Remove or re-write one episode

5 More than one Episode inside a nested IF Extract the sequence to a separate scenario

Simplicity

6 More than one Sentence inside a Exception
Solution

Extract the sequence to a separate scenario

Missing Title Inform the Title
Missing Goal Inform the Goal
Missing Actors Inform the Actors
Missing Resources Inform the Resources
Context does not contain its relevant sub-
components

Inform at least a Pre-condition, Post-
condition, Temporal Location or
Geographical Location

Missing Episodes Inform the Episodes
Episode does not contain its relevant parts (Id,
Sentence)

1. IF episode is Conditional or Loop THEN
inform at least: Id, Condition and Sentence;
2. IF episode is Simple THEN inform at least:
Id and Sentence;

Uniformity 1

Exception does not contain its relevant parts (Id,
Cause, Solution)

Inform: Id, Cause and Solution

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

134

Table 23 – Recommendations for Analyzing Completeness (Intra-Scenario).
Property Heuristic Indicator Recommendation

1 Actor does not participate in the situation; Mention the actor in at least an episode
2 Missing Actor in Actors element; Include the actor in the Actors
3 Resource that is not used in the situation; Mention the resource in at least an episode
4 Missing Resource in Resources element; Include the resource in the Resources
5 Branching Episode of an exception is missing; Update the exception Id to appoint the correct

episode

Usefulness

6 Number of episodes in each scenario is less than
3 or more than 9;

Re-write the scenario to keep between 3 and 9
episodes

1 The corresponding verbs and objects appearing in
the two compared sentences are not the same

Re-write the Title to satisfy the Goal

2
3
4 Missing Action-Verb in episode sentences; Inform an action-verb
5 Missing Linking-Verb in episode conditions; Inform a linking-verb
6 Missing State-Verb in Pre-conditions; Inform a state-verb
7 Missing State-Verb in Post-conditions; Inform a state-verb
8 Missing Action-Verb in exception solution; Inform an action-verb

Conceptually
Soundness

9 Missing Linking-Verb or State-Verb in exception
causes;

Inform a linking-verb or state-verb

Table 24 – Recommendations for Analyzing Completeness (Inter-Scenario).
Property Heuristic Indicator Recommendation

Pre-condition identified as related scenario
does not exist within the set of scenarios;

Include the related scenario to the set of scenarios

Post-condition identified as related scenario
does not exist within the set of scenarios;

Include the related scenario to the set of scenarios

Episode sentence identified as related scenario
does not exist within the set of scenarios;

Include the related scenario to the set of scenarios

Exception solution identified as related scenario
does not exist within the set of scenarios;

Include the related scenario to the set of scenarios

1

Constraint identified as related scenario does
not exist within the set of scenarios;

Include the related scenario to the set of scenarios

2 Complex Exception Solution must be treated by
a scenario;

Include the exception solution to the set of
scenarios

Integrity

3 Missing pre-condition/post-condition; IF the pre-condition is not an uncontrollable fact
THEN describe it as post-condition of another
scenario

1
Related scenario Geographical location is not in
the set of Geographical locations of root
scenario;

Re-write the geographical locations of related
scenario to be more restrict to the main scenario.

2

Related scenario Temporal location is not in the
set of Temporal locations of root scenario;

Re-write the temporal locations of related scenario
to be more restrict to the main scenario.

Coherency

3 Circular inclusion between two scenarios; Remove the reference to the main scenario (in
referenced scenario)

1 Title coincidence between two scenarios; 1. IF the sets of episodes are the same THEN
remove one scenario;
2. IF the sets of episodes are not the same THEN
rename the Title of one scenario;

2 Goal coincidence between two scenarios; 1. IF the sets of episodes are the same THEN
remove one scenario;
2. IF the sets of episodes are not the same THEN
rename the Goal of one scenario;

3 Pre-condition coincidence between two
scenarios;

IF the sets of episodes are the same THEN remove
one scenario;

4 Episodes coincidence between two scenarios; 1. IF the set of episodes of scenario_2 is included
in scenario_1 THEN remove the duplicated
episodes in scenario_1 and reference to scenario_2;
2. IF the sets of episodes are the same THEN
remove one scenario;

Uniqueness

5 Titles share the same Action-Verb and the direct
Object;

1. IF the sets of episodes are the same THEN
remove one scenario;
2. IF the sets of episodes are not the same THEN
rename the Title of one scenario;

1 There are not relationships among scenarios; Re-write the set of scenarios so that at least a
scenario references to another scenarios of the set

Feasibility

2 Unreachable operations; Inform the relevant parts of Episodes or Exceptions

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

135

Table 25 – Recommendations for Analyzing Consistency Properties.
Property Heuristic Indicator Recommendation

Non-interferential 1 Simultaneously enabled operations; 1. Check that all pre-conditions or constraints
associated to the episode/exception
corresponding to the transition are fulfilled;
2. Notify to the next software development
activities;

Boundedness 1 Overflowed resource; 1. Check that the overflowed resource is a
critical shared resource modified by several
scenarios;
2. Notify to the next software development
activities;

Reversibility 1 There are no a path from an
operation to the initial state;

Path to deadlock 1. Check whether there are shared resources
modified by the scenarios and their
relationships;
2. Notify to the next software development
activities;

Liveness 1

Never enabled transitions 1. Check that all pre-conditions, constraints,
conditions or causes of the episode/exception
corresponding to the transition are fulfilled;
2. Notify to the next software development
activities;

Following are examples that explain the working of the recommendations in

the scenarios of the “Online Broker System”. Our analysis approach found a

defect that hurts:

 Vagueness: The Episode 4 of the “Submit Order” scenario contains a

vague term (indicator: “provided”). Therefore, the recommendation of our

analysis approach is to “Remove the vague term”;

 Simplicity: The Episode 1 of the “Local Supplier bid for order” scenario

contains more than one Action-Verb (Indicator: “receives” and

“examines”). Therefore, the recommendation of our analysis approach is

to “Split the episode into multiple episodes”;

Liveness: The Petri-Net corresponding to the “Submit Order” scenario

contains a shortest path to deadlock (Indicator: <path from initial state to

deadlock>). Therefore, the recommendation of our analysis approach is to “Check

whether there are shared resources modified by the scenario and their

relationships, and Notify to the next software development activities”.

4.7.
Final Considerations

We presented a scenario language for describing scenarios using a

Restricted-form of Natural Language (RNL). The proposed scenario language

enables further transformation of scenario descriptions into executable design

models like Petri-Nets, which can be used for more rigorous analysis tasks.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

136

In order to improve the results of analysis of scenario descriptions, we

presented heuristics for finding non-explicit relationships among scenarios.

When we use any scenario for analysis, it is required to find and explore the

related scenarios. However, it is difficult to ensure that all possible related

scenarios are identified. To deal with this problem, we use the heuristics for

finding relationships to explore the related scenarios.

We presented an approach for the analysis of scenarios through the use of

NLP techniques and Petri-Nets. On the basis of this approach, it is possible to: (1)

perform a static analysis to detect defects that hurt properties related to

unambiguity and completeness; (2) perform a dynamic analysis to detect defects

that hurt properties related to consistency, by executing equivalent Petri-Nets

derived from scenarios and their relationships.

Our analysis approach provides modularity by first analyzing independent

scenarios, then composing related scenarios to one component. Also, it supports

traceability, indicating the defects in Petri-Nets and showing the source of the

defects in scenarios (or their relationships).

It is important note that the transformation and integration of Petri-Nets

methods do not introduce new defects such as described in Section 4.3.4.

4.7.1.
Complexity Analysis

The scenario language does not describe explicit iterations (it does not

define “go to”); so that in most of cases, the Petri-Net PN derived from a scenario

will be an acyclic directed graph. In the Petri-Net derivation method (Method 1 -

Figure 26), the execution of a sequence of scenario episodes or exceptions is

translated into a sequence of firing transitions. In the Petri-Net PN all sequence of

firing transitions are scanned from the initial places (initial marking M0) to the

final places (the set of reachable markings M) using the DFS (Depth-first search)

algorithm. The complexity of DFS is: O(N+|E|) where ‘N’ is the nodes (|places| +

|transitions|) number and ‘|E|’ is the arcs number. The worst-case order is: O(N2)

where |E|=N2. In scenarios (most case), each node has 2 outgoing edges (if- else

for conditional/optional episodes), then |E|=2*N, and the complexity of DFS be

greatly reduced to: O(|E|) = O(N).

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

137

Only the integration of Petri-Nets method (Method 2 - Figure 27) induces

an exponential complexity, because of the number of related Petri-Nets to be

synthesized by fusing or substitution places or transitions. However, according to

Somé (2010) this number is generally very limited in realistic examples. Thus, the

complexity will be greatly reduced. It is O(N) when the synthesized Petri-Nets do

not interact by non-sequential relationships.

According to Somé (2010), because scenarios describes requirements

artifacts, the number of scenarios in projects is typically limited; therefore scaling

to much larger projects should not be an issue because of the generally

polynomial complexity of Petri-Net transformation and integration methods.

The case studies in Chapter 6 involve projects that specify between 5 and 36

scenarios with different degree of complexity, i.e., every scenario describes

between 3 and 12 episodes, between 1 and 5 exceptions, and 1 concurrency

construct (#<episode series>#).

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

138

5
C&L (Cenários & Léxicos)

In this section we provide a description of C&L - Lua prototype tool, an

integrated environment for supporting the analysis of natural language-based

scenarios. It also provides the implementation strategies used to detect violation of

properties related to Unambiguity, Completeness and Consistency.

5.1.
C&L

C&L prototype tool was developed at the PUC-Rio Requirements

Engineering Group for editing and visualization of natural language-based

scenarios and lexicon symbols. The Lua version of C&L (C&L) was developed

by Almentero (2009).

Lexicon symbols are described using the Language Extended Lexicon

(LEL). LEL is a language designed to help the elicitation and representation of the

language used in the application. This model is based on the idea that each

application has a specific language. Each symbol in the lexicon is identified by a

name or names (synonyms) and two descriptions: Notion (denotation) explains the

literal meaning - what the symbol is, Behavioral Response (connotation) describes

the effects and consequences when the symbol is used or referenced in the

application. Symbols are classified into four types: Subject, Object, Verb and

State. Lexicon symbols are referenced within scenario descriptions. Table 26

shows the properties of a LEL symbol.
Table 26 - Symbol definition in lexicon language.

Name Symbol of LEL
Type Subject/Object/ Verb/State
Synonymous Term of LEL/Entry/Symbol
Notion Word or relevant phrase of the Universe of Discourse.

It’s described by Name, Type, Notion, Synonymous and Behavioral Response.
Behavioral
Response

Its description contains the Type.
It has zero or more Synonymous.

In this thesis, lexicon symbols are not considered, but they can be used for

further analysis of scenarios against application language represented in the

lexicon.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

139

C&L - Lua (Almentero, 2009) is a Web application developed in the Lua

programming language (Ierusalimschy, 2013). The Kepler platform (Kepler,

2009) was used to develop C&L because originally Lua was not designed for the

development of Web applications. This platform provides a series of modules and

tools which facilitates the writing of Lua code for the Web.

The C&L - Lua architecture is based on the Model-View-Controller (MVC)

framework. The architecture is vertically divided in layers and horizontally

divided in modules. The modules are distributed in the view, controller and model

layers, as can be seen in Figure 38. Four main modules were created from the

scenarios that describe the situations of the application: User, Project, LEL and

Scenario. These modules groups functionalities to manage users (User), projects

(Project), lexicon symbols (LEL) and scenarios (Scenario).

The input of the C&L – Lua is composed of projects containing scenarios or

lexicons in plain text format. The output is a set of formatted scenarios and

lexicons, where the relationships among scenarios or lexicons are represented by

hyperlinks. It facilitates the navigation between scenarios and lexicons.

Figure 38 - C&L - Lua Architecture (Sarmiento et al., 2014).

5.2.
Extending C&L - Lua

C&L - Lua was extended with the goal to provide an automatic support for

the analysis of unambiguity, completeness and consistency qualities of scenarios

described using a restricted-form of natural language (Section 4.1, Chapter 4). To

reach this goal, we have implemented a set of modules and integrated a set of

tools, each one dedicated to a specific analysis purpose of RNL scenarios. In

particular, the involved tools are: (1) a NLP tool able to identify action-verbs,

subjects and objects involved in scenario sentences; (2) a Petri-Net analysis tool

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

140

able to simulate and detect overflows and deadlocks in translated scenarios; and

(3) a Network Visualization tool having the aim of visualizing the equivalent

Petri-Nets of scenarios. Figure 39 shows the high level architecture of the

extended C&L.

Figure 39 - High Level Architecture of Extended C&L

5.2.1.
Tools

During the implementation technologies strictly open source were mainly

employed. Below the list of used tools together with short descriptions is

presented:

 NLP Compendium-js: A Natural-Language-Processing library in

Javascript, small-enough for the browser, and quick-enough to run on

keypress (Compendium-js, 2015). It performs Part-of-Speech tagging

(92% on Penn Treebank, 2015), entity recognition, sentiment analysis and

more.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

141

 Cytoscape: Cytoscape is an open source software platform in Javascript,

for visualizing complex networks and integrating these with any type of

attribute data (Cytoscape, 2015).

 PIPE2: An open source tool in Java, for creating and analyzing Petri-Nets

(Place/Transition and Generalised Stochastic Petri-Nets). It detects defects

that contribute to boundedness, safety and deadlock by analyzing the

reachability graph (PIPE2, 2015).

5.2.2.
Modules

We extended the C&L - Lua by adding the modules:

 Syntax Parser: Chunk textual scenario according to scenario model and

syntax. This is necessary to enable the model’s transformation.

 Pre-processing: Implement the steps for removing irrelevant information

from scenario elements.

 Petri-Net Generator: Implement the Mapping Rules between scenarios

and Petri-Nets.

 Analysis: Implement the methods to evaluate Structural (Static analysis)

properties of scenarios and Behavioral properties (Dynamic analysis) of

equivalent Petri-Nets:

o Unambiguity: Evaluate scenario elements by searching defect

indicators and applying metrics. For each property, common defect

indicators are stored in dictionaries (Chapter 3, Table 7).

o Completeness: Evaluate scenario elements by applying heuristics

to search defect indicators (Chapter 3, Table 8, Table 9, Table 10

and Table 11). These heuristics are driven by syntax checks and by

cross-referencing the related scenarios. Some properties (atomicity,

simplicity, usefulness, conceptually soundness and uniqueness) are

evaluated by Phrase-structure parsing and using a NLP tool.

o Consistency: Evaluate the behavior of a set of related scenarios by

running executable equivalent Petri-Nets of scenarios and

searching defect indicators (Chapter 3, Table 12). This evaluation

is driven by the Reachability Analysis and using a Petri-Net tool.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

142

 Feedback Generator: Format the output of the analysis module by

classifying defects found into Information, Warning or Error; and

appointing the defect indicator and the fix recommendation for it. Petri-

Net defects are traced into Scenario defects. Additionally, this module uses

a Visualization tool for enables the visualization of Petri-Nets in a modular

way, i.e., Petri-Nets of related scenarios are grouped into separated nets

and linked by common places.

5.3.
Implementation Details

In this sub section, we discuss the details of each module added to the C&L

- Lua. The implementation of each module was driven by scenarios and based on

the process proposed by Almentero (2009). Each one of the situations performed

by the modules was described using the scenario language presented in this work.

The underlined terms (UPPERCASE) are references to other scenarios. Scenarios

described in this chapter do not detail exceptional behavior.

The scenarios describing the situations of the remaining modules (User,

Project, Lexicon and Scenario) are detailed in Almentero (2009).

5.3.1.
Syntax Parser Module

One of the main aspects of verifying whether a plain text represents a

scenario description is splitting it into the main scenarios elements (Section 4.1,

Chapter 4). This process consist of two steps: (1) Identify the main scenario

elements by chunking on common text indicators such as TITLE, GOAL,

CONTEXT, RESOURCE, ACTOR, EPISODES and EXCEPTION; and (2)

Verify that every scenario element contains their relevant components, by

chunking on common text indicators such as GEOGRAPHICAL LOCATION,

TEMPORAL LOCATION, PRE-CONDITION, POST-CONDITION,

CONSTRAINT, IF, THEN, WHILE, DO, AND, OR, MUST, NOT, “[”, “]”

and “#”.

Each scenario element (Title, Goal, Context, Resource, Actor, Episodes,

Exception) is decomposed in its main components and sub-components, i.e., each

component is stored in a separate entity. String finding and regular expressions

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

143

are used to perform this step. For example, an exception is decomposed in: Id,

Cause (set of conditions) and Solution.

5.3.1.1.
Construct Scenarios

The main situations to verify the conformance of a plain text to the scenario

model presented in Chapter 4 are described as scenarios. Figure 40 describes the

steps to identify the scenario elements from a textual scenario.

Figure 40 – Scenario to Identify the Scenario Elements

The steps to verify that every scenario element contains their main

components is described by other scenarios, because each scenario element has

particular components described using syntax rules. Figure 41,

Figure 42, Figure 43 and Figure 44 describe the situations to verify:

Context, Resource, Episodes and Exception elements.

Figure 41 –Scenario to Verify the Main Components of Scenario Context

Figure 42 –Scenario to Verify the Main Components of Scenario Resource

TITLE: Verify Scenario Resource
GOAL: Produce a parsed resource.
CONTEXT:
 PRE-CONDITION: IDENTIFY SCENARIO ELEMENTS
 POST-CONDITION: Resource components are identified
ACTOR: C&L
RESOURCES: resource, scenario syntax
EPISODES
 1. The C&L identifies the name for each resource using the scenario syntax.
 2. The C&L identifies the Constraints for each resource using the scenario syntax.
 3. The C&L returns the parsed resource.

TITLE: Verify Scenario Context
GOAL: Produce a parsed context.
CONTEXT:
 PRE-CONDITION: IDENTIFY SCENARIO ELEMENTS
 POST-CONDITION: Context components are identified
ACTOR: C&L
RESOURCES: context, scenario syntax
EPISODES
 1. The C&L identifies the Pre-conditions in the context using the scenario syntax.
 2. The C&L identifies the Post-conditions in the context using the scenario syntax.
 3. The C&L identifies the Geographical locations in the context using the scenario syntax.
 4. The C&L identifies the Constraints for the Geographical locations using the scenario syntax.
 5. The C&L identifies the Temporal locations in the context using the scenario syntax.
 6. The C&L identifies the Constraints for the geographical locations using the scenario syntax.
 7. The C&L identifies the Constraints for the temporal locations using the scenario syntax.
 8. The C&L identifies the Context description using the scenario syntax.
 9. The C&L returns the parsed context.

TITLE: Identify Scenario Elements
GOAL: Produce a parsed scenario.
CONTEXT:
 POST-CONDITION: Scenario elements are identified
ACTOR: C&L
RESOURCES: scenario, scenario model
EPISODES
 1. The C&L identifies the Title element using the scenario model.
 2. The C&L identifies the Goal element using the scenario model.
 3. The C&L identifies the Context element using the scenario model.
 4. The C&L identifies the Actor element using the scenario model.
 5. The C&L identifies the Resource element using the scenario model.
 6. The C&L identifies the Episodes element using the scenario model.
 7. The C&L identifies the Exception element using the scenario model.
 8. The C&L returns the semi-parsed scenario.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

144

Figure 43 – Scenario to Verify the Main Components of Scenario Episodes

Figure 44 – Scenario to Verify the Main Components of Scenario Exceptions

5.3.1.2.
Identify Root Scenario

After scenarios for the Syntax Parser Module were constructed, It is

necessary to identify the root scenario of this module. Thus, we first determine the

relationship between the scenarios of the module, and from identified

relationships we will establish an order between these scenarios. The root scenario

will be the scenario that does not require any other scenario of the module

(Almentero, 2009).

In this module we identify the relationships shown in

Figure 45. Based on these relationships we can determine that the scenario

“Identify Scenario Elements” must precede all others. With this, we have

identified the “Identify Scenario Elements” scenario as the root of this module.

Pre-condition

Identify Scenario Elements

Verify Scenario Context Verify Scenario Resource Verify Scenario Episodes Verify Scenario Exception

Figure 45 – Relationships among scenarios of Syntax Parser module

TITLE: Verify Scenario Exception
GOAL: Produce a parsed list of exceptions.
CONTEXT:
 PRE-CONDITION: IDENTIFY SCENARIO ELEMENTS
 POST-CONDITION: Exception components are identified
ACTOR: C&L
RESOURCES: exceptions, scenario syntax
EPISODES
 1. The C&L identifies the Id for each exception in exceptions using the scenario syntax.
 2. The C&L identifies the Solution for each exception in exceptions using the scenario syntax.
 3. The C&L identifies the Causes for each exception in exceptions using the scenario syntax.
 4. The C&L identifies the Post-conditions for each exception in exceptions using the scenario syntax.
 5. The C&L returns the parsed exceptions.

TITLE: Verify Scenario Episodes
GOAL: Produce a parsed list of episodes.
CONTEXT:
 PRE-CONDITION: IDENTIFY SCENARIO ELEMENTS
 POST-CONDITION: Episodes components are identified
ACTOR: C&L
RESOURCES: episodes, scenario syntax
EPISODES
 1. The C&L identifies the Id for each episode in episodes using the scenario syntax.
 2. The C&L identifies the Sentence for each episode in episodes using the scenario syntax.
 3. The C&L identifies the Conditions for each episode in episodes using the scenario syntax.
 4. The C&L identifies the Constraints for each episode in episodes using the scenario syntax.
 5. The C&L identifies the Pre-conditions for each episode in episodes using the scenario syntax.
 6. The C&L identifies the Post-conditions for each episode in episodes using the scenario syntax.
 7. The C&L returns the parsed episodes.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

145

5.3.1.3.
Construct Integration Scenario

In order to give an overview of the relationship among the several scenarios

of the module, we construct an integration scenario. In an integration scenario, an

episode corresponds to a sub-scenario.

The first step to construct the integration scenario of the module is the

identification of the relationships between scenarios and the root scenario, and

their order. We can see in

Figure 45 the relationships between the scenarios; the scenarios for

verifying scenario elements can be executed in an indistinct or parallel order.

Based on the order of the relationships, we create the integration scenario of the

module. This scenario can be seen in Figure 46, and “Describe Scenario” scenario

is a pre-condition for it (detailed in Almentero, 2009).

Figure 46 – Integration Scenario of Syntax Parser Module

5.3.1.4.
Operationalize Scenarios

The scenarios of the Syntax Parser module are implemented by different

methods and organized in model layer of the MVC framework.

We utilized string finding and regular expression matching to perform the

sentences described in scenarios’ episodes. For instance, two regular expressions

are presented below:

 Regular expression used to separate each one of the actors or resources of

a scenario:

o exp_reg_separ_items = "[%,%;]".

o For example: “actor1, actor2, actor3”  {“actor1”, “actor2”,

“actor3”}.

TITLE: Parse Scenario
GOAL: Produce a parsed list of exceptions.
CONTEXT:
 PRE-CONDITION: DESCRIBE SCENARIO
 POST-CONDITION: Scenario is parsed
ACTOR: C&L
RESOURCES: scenario
EPISODES
 1. IDENTIFY SCENARIO ELEMENTS
 2. #VERIFY SCENARIO CONTEXT
 3. VERIFY SCENARIO RESOURCE
 4. VERIFY SCENARIO EPISODES
 5. VERIFY SCENARIO EXCEPTION#
 6. The C&L returns the parsed scenario

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

146

 Regular expression used to identify the ID of each one of the episodes or

exceptions of a scenario:

o exp_reg_ids = "[%a*%s*]

%d+[%.%,%:%;%s]%d[%.%,%:%;%s]%d*[%.%,%;%:]*

o For example: “1.1. IF Cause1 THEN Exception1”  {id=”1.1.”,

Cause = {“Cause1”}, solution = “Exception1”}.

5.3.2.
Pre-processing Module

One of the main aspects for translating scenarios into other models, or for

analyzing scenarios using NLP tools, is removing irrelevant information from

scenario elements (Chapter 4). This process consists of six steps: (1) Removal of

Empty Line; (2) Removal of Capitalization; (3) Removal of Brackets; (4)

Removal of URLs; (5) Removal of HTML Markup; and (6) Removal Punctuation.

5.3.2.1.
Construct Scenarios

Figure 47 presents the scenario that describes the steps to remove the

scenario elements of irrelevant information. “Clean Scenario” is the root scenario

of this module.

“Clean Scenario” is the root and integration scenario of this module.

Figure 47 – Scenario to Clean Scenario of Irrelevant Information

5.3.2.2.
Operationalize Scenarios

We utilized regular expression matching to perform the actions described in

“Clean Scenario” episodes. For instance:

 Regular expression used to remove brackets of a scenario sentence:

o remove_parentheses_reg_ex = '%([^)]*%)'

o remove_brackets_reg_ex = '%[\[^%]\]*%]'

TITLE: Clean Scenario
GOAL: Produce a cleaned scenario.
CONTEXT:
 PRE-CONDITION: DESCRIBE SCENARIO
 POST-CONDITION: Scenario elements are cleaned
ACTOR: C&L
RESOURCES: scenario
EPISODES
 1. The C&L removes the scenario of Empty Line;
 2. The C&L removes the scenario of Capitalization;
 3. The C&L removes the scenario of Brackets;
 4. The C&L removes the scenario of URLs;
 5. The C&L removes the scenario of HTML Markup;
 6. The C&L removes the scenario of Punctuation;
 7. The C&L returns the cleaned scenario.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

147

o remove_braces_reg_ex = '%{[^%}]*%}'

o For example: “The system displays the severity of alarm (high,

medium, low).”  “The system displays the severity of alarm.”

 Regular expression used to remove HTML Tags of a scenario sentence:

o remove_html_tags_reg_ex = '(<[^<>]*>)'

o For example: “The system displays the name of the alarm”

 “The system displays the name of the alarm”

 Regular expression used to remove URL of a scenario sentence:

o remove_url_reg_exp_http =

'((https?)%:[(%/%/)(%\%\)]+[%w%d%:%#%@%%%/%;%$%(%)

%~%_%?%\%+%-%=%!%.%:%,%&]*)'

o remove_url_reg_exp_ftp =

'((ftp)%:[(%/%/)(%\%\)]+[%w%d%:%#%@%%%/%;%$%(%)%~

%_%?%\%+%-%=%!%.%:%,%&]*)'

o remove_url_reg_exp_file =

'((file)%:[(%/%/)(%\%\)]+[%w%d%:%#%@%%%/%;%$%(%)%~

%_%?%\%+%-%=%!%.%:%,%&]*)'

o remove_email_reg_exp = '[A-Za-z0-9%.%%%+%-]+@[A-Za-z0-

9%.%%%+%-]+%.%w%w%w?%w?'

o For example: “The system sends an e-mail for the user

user@mail.com”  “The system sends an e-mail for the user”

 Regular expression used to remove Punctuation of a scenario sentence:

o remove_punctuation_exp_reg = '[%s+%,%.%:%;%?%!%=%+%-

%*%/%#%$%%%&%|%•

(%´%s+)(%’%s+)(%`%s+)(%”%s+)(%\'%s+)]'

o For example: “6. ATM displays ‘New PIN Successful’ message.”

 “6. ATM displays New PIN Successful message.”

5.3.3.
Petri-Net Generator Module

One of the strategies to simulate a scenario description is mapping it into a

Petri-Net (Chapter 4). This process consist of two steps: (1) Translate a scenario

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

148

into a Petri-net by using mapping rules; and (2) Integrate the derived Petri-Net

with Petri-Nets of related scenarios by using integration rules.

5.3.3.1.
Construct Scenarios

Each scenario element (Title, Goal, Context, Resource, Actor, Episodes,

Exception) is mapped into Petri-Net nodes (places and transitions) and arcs.

Mapping rules are used to perform this task. For example, an exception is mapped

into a transition, input places and output places, which represent the exception

solution, causes and post-conditions, accordingly.

Figure 48 presents the scenario that describes the steps to translate a

scenario into a Petri-Net.

Figure 48– Scenario to transform a Scenario into a Petri-Net

A Petri-Net derived from a scenario and the Petri-Nets corresponding to

related scenarios are integrated into a whole Integrated Petri-Net. Integration rules

are used to perform this task.

Figure 49 presents the scenario that describes the steps to integrate a set of

related Petri-Nets.

Figure 49 – Scenario to integrate a set of related Petri-Nets

TITLE: Integrate Petri-Nets
GOAL: Produce an integrated Petri-Net from a root scenario
CONTEXT:
 PRE-CONDITION: DESCRIBE SCENARIO
 POST-CONDITION: Scenario is integrated into a whole Petri-Net
ACTOR: C&L
RESOURCES: main scenario, integration rules, Petri-Net
EPISODES
 1. PARSE SCENARIO
 2. CLEAN SCENARIO
 3. TRANSFORM SCENARIO INTO PETRI-NET
 4. Identify sequentially related scenarios of main scenario
 5. Identify non-sequentially related scenarios of main scenario
 6. For each related scenario TRANSFORM SCENARIO INTO PETRI-NET
 7. Integrate resulting Petri-Nets into the main Petri-Net
 8. The C&L returns the Integrated Petri-Net of the main scenario

TITLE: Transform Scenario into Petri-Net
GOAL: Produce an equivalent Petri-Net of a scenario
CONTEXT:
 PRE-CONDITION: DESCRIBE SCENARIO
 POST-CONDITION: Scenario is transformed
ACTOR: C&L
RESOURCES: scenario, mapping rules, Petri-Net
EPISODES
 1. PARSE SCENARIO
 2. CLEAN SCENARIO
 3. Map the initial state (title, goal, context, resource, actor) of scenario using mapping rules into sub Petri-Net
 4. Map episodes using mapping rules into sub Petri-Net
 5. Map concurrency constructs using mapping rules into sub Petri-Net
 6. Map exceptions using mapping rules into sub Petri-Net
 7. Link the sub Petri-Nets into a whole Petri-Net
 8. The C&L returns the Petri-Net of the scenario

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

149

5.3.3.2.
Identify Root Scenario

In this module we identify the relationships among scenarios described in

Figure 48 and Figure 49. Based on these relationships we can determine that both

scenarios are root scenarios of this module, because none of them is pre-condition

of the other.

5.3.3.3.
Construct Integration Scenario

Based on the relationships between scenarios and the root scenarios, we can

see in Figure 49 that episode 3 references the “TRANSFORM SCENARIO INTO

PETRI-NET” scenario, the relationships between these scenarios is by sub-

scenario. Thus, “INTEGRATE PETRI-NETS” scenario is the integration scenario

of the module.

5.3.3.4.
Operationalize Scenarios

The operationalization of the scenarios to transform a scenario into a Petri-

Net and integrate a Petri-Net with related Petri-Nets was presented in Chapter 4:

Method 1 - Transform Scenario into Petri-Net and Method 2 - Integrate Petri-

Nets.

We utilized mapping rules, fusion/substitution places and substitution of

transition operations (Chapter 4: Table 15, Table 16, Table 17, Table 18, Table

19, and Figure 25) to translate a scenario and its relationships into a whole Petri-

Net.

5.3.4.
Analysis Module

The operationalization of the scenarios to analyze a scenario by detecting

defects that hurt Unambiguity, Completeness and Consistency was presented in

Chapter 4: Method 3 – Analyze Unambiguity, Method 4 – Analyze Completeness,

and Method 5 – Analyze Consistency.

5.3.4.1.
Construct Scenarios

Figure 50, Figure 51 and Figure 52 shows the steps to verify the

Unambiguity, Completeness and Consistency of a scenario, respectively.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

150

Figure 50 – Scenario to Analyze Unambiguity

Figure 51 – Scenario to Analyze Completeness

Figure 52 – Scenario to Analyze Consistency

5.3.4.2.
Identify Root Scenario

The scenarios of this module do not present relationships, then, we can

determine that all scenarios are root scenarios of this module, because none of

them is pre-condition of the other.

TITLE: Analyze Consistency
GOAL: Produce a list of consistency defects presents in a scenario.
CONTEXT:
 PRE-CONDITION: DESCRIBE SCENARIO
 POST-CONDITION: Scenario is analyzed
ACTOR: C&L
RESOURCES: scenario, Petri-Net tool
EPISODES
 1. PARSE SCENARIO
 2. INTEGRATE PETRI-NETS
 3. Check Non-deterministic situations using NLP tool
 4. Check Deadlock situations using NLP tool
 5. Check irreversible situations using NLP tool
 6. The C&L returns the list of defects of the scenario

TITLE: Analyze Completeness
GOAL: Produce a list of completeness defects presents in a scenario.
CONTEXT:
 PRE-CONDITION: DESCRIBE SCENARIO
 POST-CONDITION: Scenario is analyzed
ACTOR: C&L
RESOURCES: scenario, dictionaries, NLP tool, scenario syntax
EPISODES
 1. PARSE SCENARIO
 2. Check Atomicity using dictionaries and NLP tool
 3. Check Uniformity using scenario syntax
 4. Check Simplicity using NLP tool
 5. Check Usefulness using NLP tool
 6. Check Conceptually Soundness
 7. Check Coherency
 8. Check Uniqueness using NLP tool
 9. The C&L returns the list of defects of the scenario

TITLE: Analyze Unambiguity
GOAL: Produce a list of unambiguity defects presents in a scenario.
CONTEXT:
 PRE-CONDITION: DESCRIBE SCENARIO
 POST-CONDITION: Scenario is analyzed
ACTOR: C&L
RESOURCES: scenario, dictionaries
EPISODES
 1. Check Readability index
 2. Check Minimality using dictionaries
 3. Check Vagueness using dictionaries
 4. Check Subjectiveness using dictionaries
 5. Check Optionality using dictionaries
 6. Check Multiplicity using dictionaries
 7. Check Quantifiability using dictionaries
 8. Check Weakness using dictionaries
 9. Check implicitly using dictionaries
 10. The C&L returns the list of defects of the scenario

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

151

5.3.4.3.
Construct Integration Scenario

Figure 53 presents the integration scenario that describes the steps to

analyze a scenario. This scenario references in its episodes the integration

scenarios of Syntax Parser, Pre-processing and Petri-Net Generator modules.

Figure 53 – Scenario to Analyze Scenario

5.3.4.4.
Operationalize Scenarios

We utilized String finding, Regular expression matching, Phrase-structure

parsing, Levenshtein’s distance (Levenshtein, 1966), Syntactic similarity

heuristic, and Reachability analysis strategies to perform the tasks described in

heuristics for finding defects.

5.3.4.4.1.
String Finding

The string search operation is used to search a specific string within a

scenario sentence. For example, this operation is used to search ambiguous

indicators in scenario episodes.

 string.find(title, <ambiguous indicator>);

Heuristics for searching defect indicators of Unambiguity properties use

String finding strategy and Coleman-Liau Readability metric.

Figure 54 depicts how Readability index (episode 1) and Weakness

indicators (episode 8) are calculated and detected using the Lua language,

respectively.

TITLE: Analyze Scenario
GOAL: Produce a list of defects presents in a scenario.
CONTEXT:
 PRE-CONDITION: DESCRIBE SCENARIO
 POST-CONDITION: Scenario is analyzed
ACTOR: C&L
RESOURCES: scenario, dictionaries, NLP tool, Petri-Net tool
EPISODES
 1. ANALYZE UNAMBIGUITY using indicators dictionaries
 2. ANALYZE COMPLETENESS using NLP tool
 3. ANALYZE CONSISTENCY using Petri-Net tool
 6. The C&L returns the list of defects of the scenario

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

152

Figure 54 – String Finding Operationalization

5.3.4.4.2.
Regular Expression

This is a sequence of characters that forms a search pattern. The search

pattern is used for text search in scenario sentences. For example, the following

regular expression is used to search extra unnecessary information (text between

parentheses) in scenario title:

 search_parentheses_reg_ex = '%([^)]*%)';

 string.find(title, search_parentheses_reg_ex);

5.3.4.4.3.
Levenshtein’s distance (Levenshtein, 1966)

This strategy is a string metric for measuring the difference between two

sequences. The distance between two words is the minimum number of single-

character edits (i.e. insertions, deletions or substitutions) required to change one

word into the other. For example, this is used to measure the similarity between

two scenarios by comparing their titles or objectives.

 Distance = levenshtein_distance(<title>, <goal>);

5.3.4.4.4.
Phrase-structure Parsing

This strategy is used to analyze the grammatical structure of sentences, and

to identify which words are the Subject or Object of a main Verb. This strategy

can indicate the forms of nouns and verbs found in a sentence. For example, this

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

153

is used to check that scenario title contains an action-verb in infinitive form and

an object.

Stanford parser (2015) tool is a most popular program to analyze the

grammatical structure of sentences. This tool chunks a sentence into POS tags

(Klein and Manning, 2003) and presents information about the relations between

the Subject, Object and Verbs found in a sentence. In order to improve the

accuracy, it is possible to train the parser by providing annotated data.

Figure 55 shows the tags used by NLP tools for tagging words in natural

language-based sentences.

Figure 55 – NLP Tags (Compendium-js, 2015)

Parsing strategy returns a parse tree based on statistical analysis of POS

tags; however, POS tagging strategies do not performs this task with high

precision, such as demonstrated in Table 27. Table 27 shows the POS tagging

results returned by Stanford (2015), NLTK (2015) and Compendium-js (2015)

tools. The underlined tags are wrong answers pointed out by these tools.
Table 27 – tagging Examples using NLP Tools

NLP tool Sentence POS Tags Correct Answer
Stanford Process/NN bids/NNS
NLTK Process/NN bids/NNS
Compendium-js

Process bids

Process/NN bids/NNS

Process/VB bids/NNS

Stanford User/NN downloads/NNS
the/DT licence/NN file/NN

NLTK User/NN downloads/NNS
the/DT licence/NN file/NN

Compendium-js

User downloads
the licence file

User/NN downloads/NNS
the/DT licence/NN file/NN

User/NN
downloads/VBZ
the/DT licence/NN
file/NN

Stanford Administrator/NNP types/NNS in/IN his/PRP$
user/NN name/NN and/CC password/NN

NLTK Administrator/NN types/NNS in/IN his/PRP$
user/NN name/NN and/CC password/NN

Compendium-js

Administrator
types in his user
name and
password

Administrator/NNP types/VBZ in/IN his/PRP$
user/NN name/NN and/CC password/NN

Administrator/NN
types/VBZ in/IN
his/PRP$ user/NN
name/NN and/CC
password/NN

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

154

In Table 27, it is possible to notice that Stanford (2015) and NLTK (2015)

tools did not identify the main verbs of three sentences. These verbs are tagged as

“Nouns”: “Process”, “Downloads” and “Types”. This fact is due to more than one

Part-of-Speech can be associated with a word. For example in the sentence:

Administrator types in his user name and password, the word types may be

interpreted as a noun or verb.

Thus relying only on the parse tree may not provide good accuracy due to

the imprecision of POS tagging phase. To improve the accuracy of parsing phase,

we provide:

 Adjusting rules based on context-free grammars;

 Adjusting rules based on words that are both “Nouns” and “Verbs”;

We noticed that sentences contain words that can be both a “Noun” and a

“Verb”. In fact, there are many words that can be used to name a person, place or

thing and also describe an action. There are many examples of words that can be

both nouns and verbs: "link", "step", "search", "contact", "validate", "approve",

"download","store",”delete","use","activate","like","form","transfer","view","gra

nt","put","display","broadcast","order","process","bid","prompt","update","acce

ss", "account", "release". More examples are listed in NounAndAdverb (2015).
Table 28 – Rules to Extract Action-Verbs and Nouns

 Pos Tags Condition Rule to adjust Post Tags Example
…+ [IN | DT | VB& | RB& |
JJ&] + [VB | VBP | VBZ] + …

 …+ [IN | DT | VB& | RB& |
JJ&] + [NN | NNS] + …

System displays the welcome
interface

…+ [VB | VBP | VBZ]+“OF”+
…

 …+ [NN | NNS] + “OF” + … System displays list of possible
criteria

…+[POS | “’” | “`” | “´”] +
[VB | VBP | VBZ] + …

 …+[POS | “’” | “`” | “´”] +
[NN | NNS] + …

administrator chooses the
browse Candidates' list option

…+[VB | VBP | VBZ]+VB& +
…

Second verb is
“TO BE” or “TO
HAVE”

…+[NN | NNS]+VB& + … System queries the database for
news messages, whose expiry
date and time have passed.

Noun

... + [VB | VBP | VBZ] + … +
[VB | VBP | VBZ]

Token is a Verb
that is also a
Noun

... + [VB | VBP | VBZ] + … +
[NN | NNS] + “NULL”

User fills all required personal
client data forms

…+ ^[IN | DT | POS | VB& |
JJ& | PRP$] + NN& + [IN | DT
| VB& | RB& | JJ&] + …

Token is a Noun
that is also a
Verb

…+ ^[IN | DT | POS | VB& |
JJ& | PRP$] + [VB | VBZ] +
[IN | DT | VB& | RB& | JJ&] +
…

System verifies possibility …

…+ NN& + ^ (TO + [DT |
PDT | PRP$ | NN& | JJ&]) +
…

Token is a Noun
that is also a
Verb

…+ [VB | VBZ] + ^ (TO +
[DT | PDT | PRP$ | NN& |
JJ&]) + …

User types in the numbers of his
PIN and presses the Enter button

Verb

…+ NN& + NN& + (TO +
[DT | PDT | PRP$ | NN& |
JJ&]) + …

Token is a Noun
that is also a
Verb

…+ NN& + [VB | VBZ] + (TO
+ [DT | PDT | PRP$ | NN& |
JJ&]) + …

Candidate proceeds to the
chosen-majors-view

Table 28 shows the rules to adjust the accuracy of POS tagging phase

adding a second phase. In Table 28, + means composition, () is used for grouping,

| stands for “OR”, [x] denotes the structure to select an option, and “^” denotes

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

155

that is not contained within the brackets. “OF” is a terminal word and “…” means

that a word is followed by other word.

Parsing strategy was used by Liu et al (2104) and Ciemniewska (2007) to

extract action tuples information from use case steps. For improving the accuracy

of parsing, they used annotated data for training the analysis on POS tags.

However, this task requires an additional manual effort for training phase.

In this thesis, we improved the accuracy of parsing phase by creating simple

rules to extract “Nouns” and “Verbs” based on dictionaries containing words that

can be both a “Noun” and a “Verb”. This strategy adjusts the accuracy of POS

tagging phase and reduces the manual effort for training.

The tool Compendium-js (2015) provides the method “analyse (sentence)”,

which returns an object containing information like: POS tags and Tokens

(Chunked text). Three methods were created for improving the POS tagging and

Parsing tree:

 get_verbs(<sentence>, <analise_sentence>, <verbs_and_nouns>): Get

action-verbs analysing POS tags, and using adjust rules detailed in Table

28;

 get_nouns(<sentence>, <analise_sentence>, <verbs_and_nouns>): Get

nouns analysing POS tags, and using adjust rules detailed in Table 28;

 get_sentence_components(<sentence>): Get parse tree components

(Action-verb, Subject and Object) using the action-verbs and nouns

returned by previous methods;

Figure 56 depicts the implementation (JavaScript) of the method to get the

main syntactic components of a textual sentence.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

156

Figure 56 – Get sentence components method (Subject, Action-Verb and Objects).

5.3.4.4.5.
Syntactic Similarity Heuristic

This strategy is used to detect the syntactic similarity between two

sentences. For example: for each verb and objects in the title of a scenario, it

calculates the similarity with the verb and objects of another scenario title. We

implemented the similarity heuristic by combining related works about

modularization of requirements (Al-Otaiby et al., 2005) and similarity in user

/*Title: Get Sentence Components
/*Goal: Get sentence components (Subject, Action-Verb and Objects)
/*Context:
 --Pre-condition: sentence is not empty
/*Actor: C&l
/*Resource: sentence, verbs_and_nouns set, compendium-js
function get_sentence_components(sentence){
 var sentence_components = null;
 var verbs_and_nouns = new Array("finish","link","step", "search","contact","validate","approve","download", "store", "delete", "use",

"signal"); //more in http://www.enchantedlearning.com/wordlist/nounandverb.shtml
 var verbs = new Array();
 var nouns = new Array();
 var subjects = new Array();
 var action_verb = "";
 var verb_time = "";
 var num_sentences = 1;
 var verb = null; //action-verb object
 var objects = new Array();
 sentence = sentence.toLowerCase();
 //@Episode 1: analyse sentence using compendium-js
 var analise_sentence = compendium.analyse(sentence);
 //@Episode 2: get verbs
 verbs = get_verbs(sentence, analise_sentence, verbs_and_nouns);
 //get nouns
 nouns = get_nouns(sentence, analise_sentence, verbs_and_nouns);
 //@Episode 3: get action-verb
 if (verbs != null && verbs.length > 0){
 //get verb with the minimal token_index (position in the sentence)
 var position = -1;
 for(var i = 0; i < verbs.length; i++){
 if (i == 0){
 verb = verbs[i];
 } else {
 if(verb.token_index > verbs[i].token_index){
 verb = verbs[i];
 }
 }
 }
 action_verb = verb.text;
 if(verb.pos == 'VBZ')
 verb_time = "PRESENT_TENSE"; //VBZ
 else
 verb_time = "INFINITIVE_FORM"; //VB, VBP

 }
 if (nouns != null && nouns.length > 0){
 nouns = concatenate_consecutive_nouns(nouns, verbs);
 for(var i = 0; i < nouns.length; i++){
 if(verb != null){
 //@Episode 4: if there are nouns before 'action-verbs', then add to subjects
 if (nouns[i].token_index < verb.token_index) {
 subjects.push(nouns[i]);
 }
 //@Episode 5: if there are nouns after 'action-verbs', then add to objects
 if (nouns[i].token_index > verb.token_index) {
 objects.push(nouns[i]);
 }
 } else { //no objects
 //get subjects
 subjects.push(nouns[i]);
 }
 }
 }
 //@Episode 6: Get number of sentences
 if(analise_sentence != null && analise_sentence.length > 1){
 num_sentences = analise_sentence.length;
 }
 //@Episode 7: format sentence components
 sentence_components = {
 'action_verb': action_verb, 'verb_time': verb_time, 'subjects': subjects, 'objects': objects, 'verbs': verbs, 'nouns': nouns,
 'num_sentences': num_sentences

 };
 //@Episode 8: return sentence components
 return sentence_components;
}

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

157

stories (Lucassen et al., 2015). We use a similarity measure that produces a value

between zero and one, where zero means there is no relationship between the pairs

of scenarios under question and one indicates a maximum relationship. The

similarity between two scenarios i and j is calculated by the following steps:

 Calculate Object_Similarity(title(i), title(j)) = m/p , where p is total

distinct objects in the two scenarios and m is number of matching objects

between the scenarios;

 Find Action_Verb(title(i)) and Action_Verb(title(j)) in the two scenarios;

 IF Object_Similarity(title(i), title(j)) > 0 AND Action_Verb(title(i)) =

Action_Verb(title(j)) THEN Scenario i and j are pontentially duplicated;

For example, “International Supplier bid for order” and “Local Supplier bid

for order” are potentially duplicated, because they perform the same Action-Verb

(bid) for the same Object (order).

Figure 57 depicts the implementation (JavaScript) of the method to

measure the syntactic similarity between two textual sentences.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

158

Figure 57 – Syntactic Similarity Implementation.

/*Title: Measure Syntactic Similarity
/*Goal: Measure the similarity between two sentences (used to calculate duplicity and coherency)
/*Context:
 --Pre-condition: sentence and other_sentence are not empty
/*Actor: C&l
/*Resource: sentence, other_sentence
function measure_syntactic_similarity(sentence, other_sentence){
 sentence = sentence.toLowerCase();
 other_sentence = other_sentence.toLowerCase();
 //@Episode 1: Find action-verbs in the sentences
 var nlp_sentence = get_sentence_components(sentence);
 var nlp_other_sentence = get_sentence_components(other_sentence);
 var objects_sentence = new Array();
 var objects_other_sentence = new Array();
 var verbs_sentence = new Array();
 var verbs_other_sentence = new Array();

 if (nlp_sentence != null) {
 objects_sentence = nlp_sentence.objects;
 verbs_sentence = nlp_sentence.verbs;
 } else {
 return false;
 }
 if (nlp_other_sentence != null) {
 objects_other_sentence = nlp_other_sentence.objects;
 verbs_other_sentence = nlp_other_sentence.verbs;
 } else {
 return false;
 }
 //Similarity metric m/p > 0
 var total_objects = 0;
 var total_distinct_objects = 0;
 var total_matching_objects = 0;
 //@Episode 2: Get union of the objects
 var union_objects = new Array();
 if (objects_sentence.length > 0){
 for(var i = 0; i < objects_sentence.length; i++){
 //singulars
 var singular_noun= objects_sentence[i].stem;
 union_objects.push(singular_noun);
 total_objects = total_objects + 1;

 }
 }
 if (objects_other_sentence.length > 0){
 for(var i = 0; i < objects_other_sentence.length; i++){
 //singulars
 var singular_noun= objects_other_sentence[i].stem;
 if (contains_verbs_nouns(union_objects, singular_noun) == false){
 union_objects.push(singular_noun);
 total_objects = total_objects + 1;

 }
 }
 }
 //@Episode 3: Get number of matching objects between the two sentences ('m')
 if (objects_sentence.length > 0){
 for(var i = 0; i < objects_sentence.length; i++){
 if (objects_other_sentence.length > 0){
 for(var j = 0; j < objects_other_sentence.length; j++){
 //compare singulars
 if (objects_sentence[i].stem == objects_other_sentence[j].stem){
 total_matching_objects = total_matching_objects + 1;
 }
 }
 }
 }
 }
 //@Episode 4: Get total distinct objects between the two sentences ('p': total objects between)
 total_distinct_objects = total_objects - total_matching_objects;
 //@Episode 5: Check that they have the same action-verb
 var same_action_verb = false;
 if (verbs_sentence.length > 0){
 for(var i = 0; i < verbs_sentence.length; i++){
 if (verbs_other_sentence.length > 0){
 for(var j = 0; j < verbs_other_sentence.length; j++){
 if (verbs_sentence[i].stem == verbs_other_sentence[j].stem){
 same_action_verb = true;
 break;
 }
 }
 }
 if (same_action_verb == true){
 break;
 }
 }
 }
 //@Episode 6: IF they have the same action-verb , they are potentially duplicated
 if (same_action_verb && (total_matching_objects/total_distinct_objects) > 0)
 return true;
 else
 return false;

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

159

5.3.4.4.6.
Reachability Analysis:

Heuristics for searching defect indicators that hurt Consistency properties

use Reachability analysis strategy implemented in PIPE2 (2015) tool.

This strategy detects defects in Petri-Nets due to dynamic properties like

Boundedness, Liveness and Deadlock-free (Reisig, 1985). In order to detect

defects in Petri-Nets and indicate the source of these defects in scenarios and their

relationships, we updated the PIPE2 (2015) tool by adding the

“stateSpaceAnalysis” method to the module “StateSpace”.

 pipe.modules.stateSpace.StateSpace: This module performs the reachabilty

analysis of a Petri-Net in format PNML (Petri-Net Markup language);

 stateSpaceAnalysis(String pnmlFileName): Run state space using as

parameter a filename (with pnml format). This method returns a feedback

of the analysis, indicating the defects in Petri-Nets and their corresponding

scenarios;

Other important method added to the class “MyTree” of calculations module

is:

 Boolean[] neverEnabledTransitions(): This method returns a list

containing never enabled transitions, when the Petri-Net is executed.

Figure 58 depicts the implementation (Lua) of the method to run a java

command line on Linux to run StateSpace analysis method of PIPE2 (2015).

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

160

Figure 58 – Reachability Analysis on PIPE2.

Table 29 shows the implementation strategies for each one of the defect

detection heuristics of Completeness properties.

5.3.5.
Feedback Generator Module

The output of the Analysis module must be formatted and returned to the

requirements engineer. Thus, the defects are classified as Information, Warning or

Error; and fix recommendations for each defect.

Figure 59 presents the scenario that describes the steps to format the

analysis output of a scenario.

[[--
@Title: Generate Consistency Fededback
@Goal: Generate Consistency Fededback of a scenario using its equivalent Petri-Net (pnml_file_name).
@Context:
 - Pré-condition: pnml_file_name is valid
@Atores: C&L, Pipe2.
@Recursos: pnml_file_name
]]--
function return_feedback_pipe2_petri_net(pnml_file_name)
 local retorno_pipe2 = ''
 local xml_retorno_pipe2 = ''
 --@Episode 1: Format the JAVA command to run pipe2: StateSpace Analysis
 local string cmd_exec_pipe2 = "cd "..retornar_caminho_cel_pipe2().."/target/classes".." && ".."java -classpath .:./lib/jpowergraph-0.2-
common.jar:./lib/jpowergraph-0.2-swing.jar:./lib/powerswing-0.3.jar:./lib/drmaa.jar:./lib/hadoop-0.13.1-dev-core.jar:./lib/jcommon-1.0.10.jar:./lib/jfreechart-
1.0.6.jar:./lib/jfreechart-1.0.6-swt.jar:./lib/tools.jar:.lib/jeval.jar StateSpacePipe ".. "\'"..retornar_caminho_cel_pnml().."/".. pnml_file_name.."\'".."
\'"..retornar_caminho_cel_pnml().."/"..pnml_file_name..".result'"
 --@Episode 2: Run Linux process for StateSpace analysis
 util_exec.exec_silent(cmd_exec_pipe2)
 --@Episode 3: Read the analysis results generated by pipe2
 local file_result = io.open('../visao/pnml/'..pnml_file_name..'.result', "rb") -- r read mode and b binary mode
 if not file_result then
 retorno_pipe2 = 'Error'
 else
 local content = file_result:read "*a" -- *a or *all reads the whole file
 file_result:close()
 retorno_pipe2 = content
 end

 --@Episode 4: Format the feedback in XML format
 xml_retorno_pipe2 = xml_retorno_pipe2.."<pipe2_feedback>"
 if retorno_pipe2 and retorno_pipe2 ~= '' then
 xml_retorno_pipe2 = xml_retorno_pipe2..[[<info>]]
 xml_retorno_pipe2 = xml_retorno_pipe2..[[<value>]]
 xml_retorno_pipe2 = xml_retorno_pipe2.."<![CDATA["..retorno_pipe2.."]]>"
 xml_retorno_pipe2 = xml_retorno_pipe2..[[</value>]]
 xml_retorno_pipe2 = xml_retorno_pipe2..[[</info>]]
 end
 xml_retorno_pipe2 = xml_retorno_pipe2.."</pipe2_feedback>"
 --@Episode 5: Return the feedback
 return retorno_pipe2, xml_retorno_pipe2
end

C&L (Lua) PIPE2 (Java)
Consistency Analysis
return_feedback_pipe2_petri_net(pnml_file_name)

StateSpace Analysis
String stateSpaceAnalysis(String pnmlFileName)

Linux Environment

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

161

5.3.5.1.
Construct Scenarios

Figure 59 – Scenario to Generate Feedback

5.3.5.2.
Operationalize Scenarios

In Table 29, we detail how each one defect that hurts Completeness

properties are classified, and how the heuristics to detect them are implemented

and classified. The heuristics are classified according to the analysis strategy. The

defects are classified as: Information, Warning or Error.

Defects that hurt Unambiguity properties are detected by String Finding

strategy, and defects that hurt Consistency properties are detected by Reachability

Analysis of corresponding Petri-Nets.

TITLE: Generate Feedback
GOAL: Produce a formatted list of defects.
CONTEXT:
 PRE-CONDITION: ANALYZE SCENARIO
 POST-CONDITION:
ACTOR: C&L
RESOURCES: defects
EPISODES
 1. The C&L classifies the defects related to Information.
 2. The C&L classifies the defects related to Warning.
 3. The C&L classifies the defects related to Error.
 4. The C&L recommends a fix for each defect.
 5. The C&L returns the formatted list of defects.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

162

Table 29 – Intra-scenario Properties Related to Completeness.

Property Heuristic Analysis Strategy Defect Category Implementation
1 Lexical Warning String finding
2 Lexical Warning String finding

Atomicity

3 Syntactic Warning Phrase-structure Parsing
1 Syntactic Warning Phrase-structure Parsing
2 Syntactic Warning Phrase-structure Parsing
3 Lexical Information Regular expression matching
4 Lexical Warning String finding
5 Lexical Warning String finding

Simplicity

6 Lexical Warning String finding
Uniformity 1 Lexical Warning Regular expression matching, String

finding
1 Lexical Warning String finding
2 Syntactic Warning Phrase-structure Parsing
3 Lexical Warning String finding
4 Syntactic Warning Phrase-structure Parsing
5 Lexical Warning String finding

Usefulness

6 Lexical Warning String finding
1 Syntactic Warning Syntactic Similarity Heuristic
2 Semantic Warning
3 Semantic Warning

Difficult to be measured by an automatic
tool;

4 Syntactic Warning Phrase-structure Parsing
5 Lexical Information String finding
6 Lexical Information String finding
7 Lexical Information String finding
8 Syntactic Warning Phrase-structure Parsing

Conceptually
Soundness

9 Lexical Information String finding
1 Lexical Error String finding
2 Lexical Information String finding

Integrity

3 Lexical Information String finding
1 Semantic Warning Difficult to be measured by an automatic

tool;
2 Lexical Warning String finding

Coherency

3 Lexical Warning String finding
1 Lexical Warning Levenshtein’s distance
2 Lexical Warning Levenshtein’s distance
3 Lexical Warning Levenshtein’s distance
4 Lexical Warning Levenshtein’s distance

Uniqueness

5 Syntactic Warning Syntactic Similarity Heuristic
1 Lexical Error Breadth-first search Feasibility
2 Lexical Error Breadth-first search

5.4.
Usage

The extended C&L – Lua comes with simple web-based user interface. In

the C&L initial page (Figure 60) the user finds a small text explaining the

software and links to external information about the C&L.

To start using the C&L the user must sign up. The user registration is done

through a simple form were the user must provide, among other information, its

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

163

name, e-mail, login and password. After registering in the application, the user

can login informing the necessary data.

Figure 60 - Initial page of the C&L.

5.4.1.
C&L Main Menu

The operation of C&L is described through an integration scenario (Figure

61), which is an artificial scenario created in order to provide an overview of the

features of the software. The episodes of this scenario are references to scenarios

that describe functionalities provided by the different modules that composes the

system. The underlined terms are references to other scenarios (those that appear

in uppercase) or to lexicon symbols (those that appear in lowercase). Thus, the

term “SELECT PROJECT” in Figure 61 is a link to the scenario that describes

how the user selects a project registered in the system. On the other hand, the term

“user” that appears several times in the integration scenario, is a link to the

description of the lexicon term whose name is “user”. The concept of project is

used within the system to represent different domains, where scenarios and

lexicon symbols can be grouped.

After the user signing in, the system presents its main interface (Figure 61).

In this interface there are many important elements to explore the system

functionalities. These elements are: project, lexicon and scenarios menu, and work

area. The first element is located at the top right of the interface. It is through this

menu that the user selects the project he wants to work with at the moment.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

164

Figure 61 - Integration scenario to use the C&L.

5.4.2.
C&L Scenario and Lexicon Functionalities

Three new options appear at the main menu after selecting a project: new

lexicon symbol, new scenario and other options. If the user selects the option

“new scenario” he is redirected to a form (Figure 62) to include the information

about the new scenario. The same happens when the “new lexicon symbol” option

is selected, but in this case the form allows including information about a lexicon

symbol. As the scenarios and lexicon symbols are included in the projects, their

title and names are displayed in the lexicons and scenarios menu (left side of the

main interface).

Figure 62 - Add lexicon symbol and add scenario forms.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

165

When the user selects a lexicon symbol or scenario from lexicons and

scenarios menu, the C&L application automatically assembles a network of

relationships identifying what scenarios and lexicons symbols are referenced in

the body of the selected element (Figure 61). The relationships identified are used

to create two kinds of trace: backward and forward. These traces allow the

navigation between the elements referenced by the one being visualized (forward)

and the navigation between the elements that references the one being visualized

(backward). The C&L differentiates the links between scenarios (the scenarios are

written in uppercase) and lexicon symbols (written in lowercase). The links

between scenarios and scenarios, scenarios and lexicon symbols and lexicon

symbols and lexicon symbols are created. Those from lexicons to scenarios are

not created.

5.4.3.
C&L Analysis Functionality

The scenario analysis functionality is activated in the project or scenario

visualization interfaces (when the user selects a project or a scenario). This

functionality generates a feedback containing a list of defects that hurt

Unambiguity, Completeness and Consistency properties.

Figure 63 depicts the project visualization interface.

Figure 63 – Visualize Project Form.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

166

Figure 64 – Visualize Scenario Form.

When the analysis functionality is executed from the project interface, it

analyzes each one of the scenarios of the project.

Figure 65 depicts the analysis feedback for the “Online Broker System”

project described in Chapter 4.

Figure 65 – Project Analysis Feedback Interface (1).

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

167

When the analysis functionality is executed from a specific scenario

interface, it analyzes the scenario and the related scenarios (sequentially and non-

sequentially related). Figure 66 depicts an excerpt of the analysis feedback for the

“Submit Order” scenario of the “Online Broker System” project described in

Chapter 4.

Figure 66 – Project Analysis Feedback Interface (2).

One important task of the feedback generator modules is to trace the defects

reported from the Petri-Net tool (PIPE2, 2015), to the source of these in the

scenarios. Figure 66 shows how a path to deadlock in the equivalent Petri-Net of

the “Submit Order” scenario, is formatted using scenario elements, i.e. the path to

deadlock is presented as a sequence of episodes and exceptions involving related

scenarios.

5.4.4.
C&L Petri-Net Visualizer Functionality

Other task of the feedback generator module is the visualization of the

equivalent Petri-Net. From the analysis feedback form, we can activate the

visualization interface. Figure 67 shows an excerpt of the integrated Petri-Net of

“Submit Order” scenario. The places and transitions of the related Petri-Nets

(related scenarios) are grouped in different modules.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

168

Figure 67 – Petri-Net Visualization Interface.

5.5.
Final Considerations

In this chapter we presented details of the implementation of the C&L tool,

a tool for supporting the tasks performed by our analysis approach. The objective

of the extended C&L is to assist the requirements engineers in their analysis tasks

for improving scenario specifications.

Among the limitations of the C&L are the heuristics (for finding defects)

that depends on the NLP tool used (Compendium-js, 2015), which is a small

version developed in JavaScript. In a further version, it is recommended the use

an NLP tool with higher precision like Stanford (2015), openNLP (2015) or

GATE (2015).

Other limitation is the method for measuring similarity between scenarios. It

uses a syntactical analysis measure (Syntactic Similarity). In future version, we

expect to enrich this method by considering synonymous information provided by

the WordNet (2015) lexical database.

The implementation was tested on the unit level and on the integration level,

using the examples of scenarios presented in case studies. These results will be

shown in the next chapter.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

169

6
Case Studies

In order to evaluate the effectiveness of the proposed approach, we apply

our analysis approach, implemented in the C&L – Lua tool, to a set of scenarios

from four different SRSs to show which defects are detected.

6.1.
Introduction

This sub section describes the preparation needed to conduct the case

studies.

The Goal of our case studies is to analyze SRSs described as scenarios with

the purpose of detecting defects with close to 100% recall and higher precision. In

line with Berry’s notion of a dumb RE tool (Berry, 2012).

The case studies address the following research questions:

RQ1: Will the proposed automated analysis approach detect defects in

SRSs in due time?

RQ2: Will the proposed automated analysis approach detect defects in the

SRSs correctly and consistently?

6.1.1.
Hypothesis

The general hypothesis of the case studies is that the proposed automated

analysis approach should help to identify and show a great deal of defects from a

set of scenario specifications, and furthermore take less time than if performed

using experts (Requirements Engineers).We aim at evaluating our hypothesis with

projects that cover a wide range of software domains, which apply use cases or

scenarios for describing requirements, and which are publicly available for other

researchers to compare their studies with ours.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

170

6.1.2.
Variables

In the case studies, we identified two response variables that will help to

corroborate the hypothesis:

 The first variable measures the time needed to identify defects in a set of

scenarios (Time Analysis).

 The second variable measures the amount of correct defects identified with

our approach (Quality Analysis).

6.1.3.
Evaluation Metrics

Regarding the interpretation of the response variables, especially the second

one, we chose to apply measures (precision and recall) from Information Retrieval

(Olson, 2008). We used the definition of (Alchimowicz, 2011) for the description

of the variables used in the precision and recall definition. Alchimowicz (2011)

applied two other metrics: True positive rate and True negative rate.

Based on (Olson, 2008) we describe Precision and Recall:

 Precision measures the rate of correct defects identified by the approach

(TP: true positives) in contrast to the amount of incorrect detections (FP:

false positives).

 Recall measures the rate of correct defects identified by the approach (TP)

in contrast to the amount of missed defects (FN: false negatives) from all

the defects present in the set of scenarios.

 Precision and Recall are computed as follows:

Precision = FPTP
TP



Recall = FNTP
TP



Based on (Alchimowicz, 2011), a defect within a scenario sentence can be

classified as following:

 True Positive (TP): A defect is identified by the Requirements engineers

and is detected by the approach (Defect occurs).

 True Negative (TN): A defect is not identified by the Requirements

engineers and is not detected by the approach (Defect does not occur).

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

171

 False Positive (FP): A defect is not identified by the Requirements

engineers and is detected by the approach (Defect does not occur).

 False Negative (FN): A defect is identified by the Requirements engineers

and is not detected by the approach (Defect occurs).

6.1.4.
Case Study Selection

As selection criteria for the four different SRSs, we took into consideration

the following parameters:

 Access to a project in early stages of requirements specifications:

We are interested in projects which apply use cases or scenarios for

describing requirements, and that had already a preliminary analysis

result, because we need an initial referential solution (baseline) for

comparison.

 Ensuring reasonable diversity of domains: We are interested in

projects that cover a wide range of software domains, i.e., type of

project.

 Ensuring the availability of the project SRS in the community: We

are interested in projects which are publicly available for other

researchers to compare their studies.

 Ensuring reasonable scale: The number of scenarios must be

reasonable.

Several real projects from the literature and their corresponding

requirements specifications were analyzed for choosing the ones to be used in our

case study that were representative enough for generalizing the findings of this

evaluation. It is important to stress that each selected project did a case study to

evaluate their analysis approach towards improving the quality of the project

SRS.

 As a result, we selected 4 projects, namely: Online Broker System (Somé,

2010), ATM System (Cox et al., 2004), DLibra (Ciemniewska and Jurkiewicz,

2007), and Mobile News (Ciemniewska and Jurkiewicz, 2007). These project's

SRSs are described as use cases; so that, in order to evaluate them by our analysis

approach, we need to translate them to scenario representations (using the

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

172

scenario language proposed in this thesis). This task is carried out before

constructing the referential solution (baseline) for each project.

The translation of use cases into scenarios does not introduce new defects,

because use case components (pre-condition, post-condition, steps and

alternatives) have corresponding components in the scenario language (pre-

condition, post-condition, episodes and exceptions), and a sentence is written in a

similar basic grammar (a basic sentence is composed of a 3-tuple subject-verb-

object). These project's scenarios can be found in the Appendix 1.

The Online Broker System consists of use cases, whose goal is to allow

customers to find the best supplier (Local and International) for a given order.

These use cases were developed by Somé (2010) in order to evaluate an approach

to formalize textual use cases using Petri-Net formalism, and detect

inconsistencies.

The ATM System consists of a set of simplified use cases that describe the

functionalities (for a supplier) to produce a new cash point for a major bank.

There are five use cases described in total: access ATM, withdrawing cash, a

customer can check their balance, make a deposit and change their PIN number.

These use cases are available in Cox et al. (2004), and the authors introduced

defects in order to evaluate a manual inspection technique based on checklists.

The DLibra and Mobile News consist of two sets of use cases created as a

part of Software Development Studio (SDS) projects. SDS is one of the main

components of the Master of Software Engineering program at Poznan University

of Technology, Poland. The projects were developed for real customers from the

university unit, industry or other organization. Their sources are available in the

thesis of Ciemniewska and Jurkiewicz (2007). The case studies of these two

projects comprise different software domains: (1) a Web-based Customer

Relationship Management (CRM) system for managing the clients of a software

for the creation of digital libraries (DLibra CRM), and (2) a news feed system for

delivering the latest bulletins to mobile devices. The authors developed use case

specifications containing typical defects from industrial projects. Then, they use

these use cases to detect common defects, and their results are available in

Ciemniewska and Jurkiewicz (2007).

Table 30 summarizes the characteristics of each case study.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

173

Table 30 - Characteristics of the Case Studies
 Broker System

(6 scenarios)
ATM System
(5 scenarios)

DLibra
(15 scenarios)

Mobile News
(15 scenarios)

Total
(41 scenarios)

Num. of episodes 32 33 80 89 234
Num. of exceptions 9 5 26 5 45
Num. of Pre-condition/
Condition/Cause/Constraint

15 8 33 0 56

Num. of Post-condition 2 9 0 0 11
Total 58 55 139 94 346

6.1.5.
Subjects

In order to create a referential baseline solution for each project's case study,

we need to construct or validate existing material on the analysis results of each of

the four projects, which the respective SRSs were translated to our scenario

language.

A referential baseline solution lists the defects contained within scenarios or

a set of scenarios, which will act as the basis for the evaluation of our analysis

approach. A defect in a baseline solution is described using the following format:

<Property> - <Type Defect> : <Detail>, where “Property” is the quality

negatively impacted by the defect, “Type Defect” is the classification of the

defect, and “Detail” gives a description of the defect for fixing. These project's

scenarios and baseline solutions can be found in the Appendix 1.

Thus, to start the evaluation of the project's case studies, we counted on five

senior Requirements Engineers as volunteers. These engineers are master and

Ph.D Computer Science students at PUC-RIO, 30–40 years old, and they have

been working in industry for the last 10 years. Particularly, they have been

working with use cases for at least 5 years and with scenarios for at least 2 years.

We applied a questionnaire to collect the experience of these volunteers,

which showed that they had similar background; for instance, 100% of them had

knowledge about the syntax of Use Cases (Cockburn, 2001) or Scenarios (Leite et

al, 2000), and 70% had some knowledge about requirements analysis or

inspection. In order to build a shared understanding on their tasks, they received

training on our proposed analysis proposal, as well as on the scenario language

used in this thesis. These volunteers will construct a referential baseline solution

for each project's case study. This task is based on the existing preliminary

analysis results of each case study.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

174

6.2.
Referential Baseline Solution

Whereas the analysis with case studies is comparative in nature, we need to

contrast the results obtained with our automated approach (implemented in the

C&L - Lua) with another one. To keep experimental biases at a minimal level, a

valid basis for assessing the analysis results of the case studies must be identified

in advance, which act as the baseline in the evaluation.

The sources and results, with the exception of one, of the SRSs analyzed by

related work are available. Somé (2010) only makes available the material

analyzed. Cox et al. (2004), and Ciemniewska and Jurkiewicz (2007) make

available the material analyzed and their results, i.e., the defects detected by their

approaches. Most of the defects contained in the related work preliminary analysis

results (set of defects introduced and detected by related work) are mainly related

to Completeness properties, and a fewer to Unambiguity properties.

We used two strategies to establish the baselines for each selected case

study: Construction and Validation.

We construct a baseline solution for the “Online Broker System” case study

from available scenarios.

We construct the baseline solutions for the “ATM System”, “DLibra” and

“Mobile News” case studies, by reviewing and validating the available use cases

and preliminary analysis results.

It is not difficult to validate the preliminary analysis results, because the use

case language used by related work to write use cases has corresponding

components in scenario language, and a sentence is written in a similar basic

grammar; such as introduced in previous section.

We detail the process of creation of baseline solutions for each case study in

the following Sub-Sections.

6.2.1.
Online Broker System (Somé, 2010)

Somé (2010) makes available the set of scenarios formalized using Petri-

nets, however, this work does not detect defects in scenarios, and this cannot be

directly used as case study. Therefore, we had to carefully define a process that

would allow us obtain an objective baseline solution.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

175

In order to obtain a baseline solution for the “Online Broke System”, the

subjects (volunteers) manually inspected the scenarios, identifying defects across

the scenario specifications. The engineers were allocated 1h to perform the

analysis of the set of scenarios, each one working separately from the rest. At last,

after some discussions, we validated the defects they detected from the scenarios

and established a single baseline solution from this case study. The number of

defects reported for this case study was larger than we expected.

The obtained baseline solution contains defects that hurt Unambiguity

(Insertion of ambiguous words in sentences), Simplicity (action-verb in incorrect

tense, missing of the subject or object, sentences containing more than one action-

verb), Usefulness (actor does not participate in sentences, too short or too long

episodes, subjects not described in actor/resource element), and Uniformity

(incorrect format or missing of the main components in sentences) and Non-

interferential (simultaneously enabled operations).

6.2.2.
ATM system (Cox et al., 2004)

Cox et al. (2004) make available the scenarios analyzed and the defects

introduced into the scenarios to manually evaluate an inspection technique. They

conducted an experiment with final year undergraduate computer and software

engineering students taking a course in Total Quality Management (TQM), at

University of New South Wales, National ICT Australia, Sydney, Australia. They

introduced several types of defects into the scenarios, including syntactic and

semantic defects. Semantics defects are difficult to detect by an automated tool,

because this need to understand the meaning of the scenario.

In order to obtain a baseline solution for the “ATM System”, we entrusted

the preliminary analysis results of this case study to the selected subjects (two

senior Requirements Engineers).

The requirements engineers received the preliminary analysis results

provided by Cox et al. (2004). They manually reviewed and validated the

preliminary analysis results of the set of scenarios; they also removed semantic

defects detected by Cox et al. (2004). Semantic defects are difficult to detect by an

automated tool. The following episode sentence contains a semantic defect, and it

was removed:

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

176

User selects ‘Change PIN’. (Defect: no reference to enter current PIN
REQ).
In this example, an automated tool could not detect the missing of a

previous episode.

After reviewing and validating defects in preliminary analysis results, the

requirements engineers identified some new defects, mainly related to

Unambiguity properties. The obtained baseline solution contain defects that

contribute to Implicitly (sentences containing pronouns), Vagueness (sentences

containing adjectives or adverbs), Simplicity (Complex sentences, complex nested

conditional sentences, missing action-verb in correct tense or missing object),

Usefulness (lack of actor or subject in sentences, subjects not described in

actor/resource element, too short or long scenarios), Conceptually Soundness

(missing action-verb in sentences) and Liveness (never enabled operations)

properties.

6.2.3.
DLibra and Mobile News

These projects are detailed in (Ciemniewska and Jurkiewicz, 2007), i.e., the

set of scenarios and the common defects introduced in industrial projects are

publicized.

In order to obtain baseline solutions for the “DLibra” and “Mobile News”

case studies, we entrusted the preliminary analysis results of this case studies to

the selected subjects (two senior Requirements Engineers). They mapped the ten

types of defects detected by the approach proposed by Ciemniewska and

Jurkiewicz (2007) into defects that contribute to Multiplicity, Simplicity,

Usefulness, Conceptually Soundness, Uniformity and Uniqueness properties of our

approach.

The requirements engineers received the preliminary analysis results

provided by Ciemniewska and Jurkiewicz (2007). They manually reviewed and

validated the preliminary analysis results of the set of scenarios; they also detected

defects which do not occur in the referential specification, or are incorrectly

classified by Ciemniewska and Jurkiewicz (2007). The following episode

sentences contain examples of incorrectly classified defects in the baseline

provided by Ciemniewska and Jurkiewicz (2007):

User may sort clients. (Defect: depends on some condition).

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

177

User chooses a news group from the ‘Today’ menu. (Defect: This step is not
performed by an actor).
In these examples, these defects are classified incorrectly. In the first

sentence, it does not describe a conditional step, however it contains a weak term,

then, it is a weak sentence. In the second sentence, it is performed by an actor,

then, the defect does not occur.

After reviewing and validating defects in preliminary analysis results, the

requirements engineers identified some new defects, mainly related to

Unambiguity properties. The obtained baseline solution contain defects that

contribute to Multiplicity (Complex sentences containing more than one

sentences), Weakness (sentences containing ‘may’ word), Simplicity (Complex

sentences, complex nested conditional sentences, missing action-verb or missing

object), Usefulness (lack of actor or subject in sentences, too short or long

scenarios, correct step numbering between episodes and exceptions),

Conceptually Soundness (missing action-verb in sentences) and Uniformity

(Incomplete exceptions) properties.

6.2.4.
Summary of Baselines

Table 31 summarizes the baseline solution for each case study, and lists the

number of defects by the quality negatively impacted.
Table 31 – Summary of the Baseline for the Case Studies

 Broker System ATM System DLibra Mobile News Total
Unambiguity 6 9 35 54 104
Atomicity 1 1
Simplicity 7 7 35 26 75
Uniformity 2 3 5
Usefulness 6 2 3 11
Conceptually Soundness 3 3
Integrity
Coherency
Uniqueness 4 4
Non-interferential 2 2
Boundedness
Reversibility
Liveness 2 2

Total 28 22 71 86 207

In Table 31, it is possible to note that most of the defects are related to

Unambiguity (Insertion of ambiguous words in sentences), Simplicity (action-verb

in incorrect tense, missing of the subject or object, sentences containing more than

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

178

one action-verb), Usefulness (actor does not participate in sentences, too short or

too long episodes, subjects not described in actor/resource element), and

Uniformity (incorrect format or missing of the main components in episodes or

exceptions).

We put the set of scenarios and baseline solutions of each case study in

Appendix 1.

6.3.
Evaluation

After baseline solutions for each case study were established by volunteers,

we evaluated our scenario analysis approach implemented in the C&L – Lua tool

by carrying out the following steps:

 We chose the case studies as the input data for the evaluation (set of

scenarios);

 We apply the C&L – Lua to detect defects contained in scenarios of the

four case studies;

 We compare the results automatically obtained with the C&L – Lua by

looking at the baselines;

 We measure the accuracy of the analysis results using the evaluation

metrics (recall and precision);

 We use these measures to answer the response variables that help to

corroborate the hypothesis.

6.3.1.
Time Analysis

According to Alchimowicz (2011), one of the main characteristics of a tool

being developed is its efficiency. Not only developers are interested in this metric,

but also for the users, e.g. when requirements engineers have to choose between

two tools which give the same results, they would choose the one which is more

efficient.

During the evaluation of the case studies, time statistics were gathered to

asses the performance of the developed solution to automate the proposed analysis

approach.

In the evaluation it was assumed that case study length is the number of

sentences (Number of episodes + exceptions + pre-conditions + conditions +

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

179

causes + constraints + post-conditions) the set of scenarios is composed of. From

the results it can be observed that the analysis can be performed without delays,

which would be noticeable for the user. Only processing long case studies

(containing from 94 to 139 sentences) takes significant amount of time (as it can

be observed at charts in Figure 68). Moreover, according to Somé (2010),

because scenarios describes requirements artifacts, the number of scenarios and

sentences in projects is typically limited.

Figure 68 - Relation between case study length and average processing time.

Mobile News (length = 94) case study took more time than DLibra (length =

139) because the length (number of words) of the sentences contained in scenarios

of Mobile News is larger than DLibra; so that, POS tagging process of the NLP

tool took more time.

6.3.2.
Analysis Results

The referential scenario specifications were analyzed by the proposed

analysis approach in order to find the defects described for each one of the

properties related to Unambiguity, Completeness and Consistency qualities

described in Chapter 3.

We apply the C&L – Lua tool introduced in Chapter 5 to the four scenario

sets. The resulting quality analysis shows promising results that indicate high

potential for successful further improvements.

Appendix 1 summarizes the data collected from the execution of C&L –

Lua on each of the case studies by comparing the output of our analysis approach

against the corresponding baselines. The obtained results (TP, FP and FN) were

used to measure the accuracy of the C&L – Lua tool. For each case study, all of

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

180

the processed scenarios violate one or more quality properties that the C&L – Lua

can detect.

In the following sub sections are shown the results achieved by the C&L –

Lua on each case study, which indicate the Recall and Precision of the approach

to detect defects that hurt the main quality properties of scenarios.

6.3.2.1.
Results of Unambiguity Analysis

As it can be seen from the results in Table 32, unambiguity defects were

detected with the 100% recall and high precision. Only the precision for

multiplicity defects is under 100% which results from the natural language

ambiguities described in Chapter 3.

C&L – Lua achieved a Precision above 75%. When this is applied to detect

defects related to Multiplicity, the precision is lower (75%). Multiplicity defects

are difficult to detect because a sentence can describe several attributes for the

same entity, and this fact can be understand by an automated tool as attributes for

different entities. For example, in the “Broker System” case study, the following

episode sentence is incorrectly recovered (false positive) as containing a

multiplicity defect (defect indicator: “and”):

“Broker System asks for Customer name, date of birth and address”.

In this example, the C&L – Lua tool understood that name, date of birth and

address are attributes of different entities; however, they are attributes of the

customer entity.
Table 32 – Analysis of Unambiguity using the C&L – Lua.

Broker System ATM System DLibra MobileNews Unambiguity
Analysis Recall Precision Recall Precision Recall Precision Recall Precision

Vagueness 1 1 1 1 1 1
Subjectiveness
Optionality
Weakness 1 1
Multiplicity 1 0.75 1 1 1 0.86 1 0.97
Implicitly 1 1 1 1 1 1 1 1
Quantifiability 1 1 1 1

Total 1 0.86 1 1 1 0.95 1 0.98

Overall, the C&L – Lua produced reasonable results with perfect recall and

above 86% precision.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

181

6.3.2.2.
Results of Completeness Analysis

From the analysis results of Completeness properties (Table 33), one can

observe that every analyzed scenario sentence was correctly classified by the C&L

– Lua tool. When it comes to the individual properties Recall results, the C&L –

Lua identified the entire set of defects in 3 of the case studies (Broker System,

ATM System and DLibra). This result is reflected by a perfect recall score in the

Table 33. In the “MobileNews” case study, the tool obtained 93% recall.

“MobileNews” results had two false negatives, attributed to two sentences

with more than one action-verb that were not uncovered. Such behavior can be

explained by the specificity of English. In English some words can be both verbs

and nouns (as described in Chapter 5). This leads to a situation when verb can be

confused with noun, for instance in the following sentences:

“System finds all users matching deletion criteria and deletes found user
accounts”
“System receives the confirmation and displays it”

In these examples, the C&L – Lua understood that “deletes” and “displays”

are nouns (NNS).

Regarding the individual properties Precision results, the C&L – Lua

obtained acceptable results. In Broker System and DLibra, C&L – Lua achieved a

precision with 100%. In ATM System and MobileNews, C&L – Lua achieved

75% and 88% precision. This value means that from the complete set of defects

identified, only a quarter corresponded to false positives.

ATM System and MobileNews results had 4 and 3 false positives, caused by

the “Parsing” strategy used to identify subjects and action-verbs in sentences

(Detailed in Chapter 5). Such behavior is due to the situation when verb can be

confused with a noun or adjective, for instance in the following sentences:

System assigns an expiry date and time to each incoming message

User re-enters new PIN.
In these examples, the “parsing” strategy understood that “time” is a verb

(VB), and “re-enters” is an adjective (JJ).

A more detailed analysis revealed that this precision loss was also caused by

the “Syntactic Similarity” heuristic used to measure the coherency between the

title and the goal of a scenario (Detailed in Chapter 5). We noticed that some

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

182

scenario titles and goals are written using synonymous terms (i.e., domain entities

or actions can be different names or synonymous). Consequently, the detection

problem can be attributed to the syntactic analysis strategy used by our approach,

which is not improved by a semantic strategy. For instance, this situation was

encountered in the following sentences:

TITLE: WITHDRAW CASH
GOAL: User wants to withdraw money.

In this example, the “cash” and “money” are synonymous, but they are

understood as different terms by our approach.
Table 33 – Analysis of Completeness using the C&L – Lua.

Broker System ATM System DLibra MobileNews Unambiguity
Analysis Recall Precision Recall Precision Recall Precision Recall Precision

Atomicity 1 1
Simplicity 1 1 1 0.88 1 1 0.93 0.93
Uniformity 1 1 1 0.75
Usefulness 1 1 1 1 1 1
Conceptually
Soundness

1 1

Integrity
Coherency
Uniqueness 1 1

Total 1 1 1 0.73 1 1 0.94 0.91

Overall, the C&L – Lua produced reasonable results with above 94% recall

and 73% precision.

6.3.2.3.
Results of Consistency Analysis

Reveal the incorrect behavior (dynamic) of a set of scenarios from initial

requirements engineering activities is difficult and hard. This problem can be

attributed to the informal nature of scenario descriptions, usually written using

natural language. Thus, it is difficult to establish a baseline solution to compare

with analysis results obtained using an automated approach.

However, the requirements engineers manually inspected the scenarios of

“Broker System” and “ATM System” case studies, and they identified defects like

Non-interferential and Liveness (Table 31). In short projects, it can be possible

identify non-deterministic situations or never executed sentences, without

executing or simulating the scenarios using rigorous representations.

As it can be seen from the results in Table 34, consistency defects were

detected with the 100% recall and precision.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

183

Table 34 – Analysis of Consistency using the C&L – Lua.
Broker System ATM System DLibra MobileNews Unambiguity

Analysis Recall Precision Recall Precision Recall Precision Recall Precision
Non-interferential 1 1
Boundedness
Reversibility
Liveness 1 1

Total 1 1 1 1

When facing large projects, the number of scenarios could be unmanageable

and the requirements engineers have difficulties to manually identify

inconsistencies from the behavior of scenarios, mainly because the relationships

among several scenarios of the project can not be explicit.

With such situations on mind, the C&L – Lua generates warning or

information messages instead of error, to indicate possible behavioral defects.

C&L – Lua can be applied to detect such defects as non-deterministic situations,

deadlocks and never enabled operations. That is, it is sufficient to translate related

scenarios (identified by our approach, such as demonstrated in Chapter 4) into a

consistent Integrated Petri-Net and to perform simulation and reachability analysis

over the Petri-Net.

C&L – Lua generates warning messages to indicate possible deadlock when

two or more scenarios are executed concurrently. Such behavior is due to

simultaneously executed scenarios. For instance in the “Broker System”, the

suppliers are executed concurrently due to common pre-conditions, such behavior

can produce a potential deadlock among then. Figure 69 shows the warning

message produced by the C&L – Lua to indicate a possible path to deadlock when

suppliers’ scenarios are invoked from the main scenario “Submit Order”.

Figure 69 – Consistency Analysis Using Petri-Nets in “Broker System”.

“MobileNews” analysis results recovered Liveness defects, attributed to 4

exceptions which are never enabled for execution. Such behavior can be detected

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

184

by simulating the Petri-Net and detecting never enabled transitions. Figure 70

shows a never enabled exception from “Delete a User Group” scenario.

Figure 70 – Consistency Analysis Using Petri-Nets in “Mobile News”.

6.3.2.4.
Results of Correctness Analysis

Considering that Correctness is positively contributed by Unambiguity,

Completeness and Consistency qualities; we can aggregate the quality results

produced by related properties.

Overall, the automated identification of defects produced reasonable results.

Aggregated values of the above accuracy-metrics are as in Table 35:
Table 35 – Analysis of Correctness using the C&L – Lua.

Correctness Analysis
Broker System ATM System DLibra Mobile News

Recall 1 1 1 0.97
Precision 0.96 0.91 0.98 0.95

C&L – Lua detects the total amount of scenarios with defects with above

91% precision and 97% recall.

6.4.
Interpretation

Four case studies have been carried out to evaluate the accuracy of the

proposed analysis approach. These set of scenarios have been evaluated with

respect to Information Retrieval metrics. We evaluated the degree of accuracy of

results produced by the developed tool (C&L-Lua) with respect to reference

solutions elaborated by expert Requirements Engineers.

The general hypothesis was verified: “the proposed automated analysis

approach should help to identify and show a great deal of defects from a set of

scenario specifications, and furthermore take less time than what it would take to

Requirements engineers”. The proposed solution detects defects in scenarios in an

acceptable response time, and with close to 100% recall and above 83% precision,

inline with Berry’s notion (Berry 2012).

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

185

The results obtained with the proposed approach implemented in C&L –

Lua were precise, making only a few mistakes in the detection process. The

overall precision was quite high (93% precision), exceeding our expectations.

Three out of 4 case studies obtained the maximum recall, which means that, for

those defects correctly identified, our approach was able to provide the right

advice every time.

The analysis of the evaluation allows to state that the developed methods

and heuristics of automatic defects detection are reliable and can significantly

improve the quality of the scenario descriptions. Although these set of scenarios

describe some abstract systems, they show the typical defects of the industrial

requirements specifications, such as demonstrated in (Alchimowicz, 2011).

Finally, case studies show that the developed referential scenario

specifications can be used in different ways by both researchers and analysts.

6.4.1. Accuracy of the Petri-Net Generator

We generate one Petri-Net for each scenario; the accuracy of the method to

transform a scenario into a Petri-Net is measured by the accuracy of the control

flow information of the generated Petri-Net. To be specific, we check (1) whether

the nodes (places and transitions) and arcs are correctly generated and linked in

the Petri-Net and (2) whether the input places (pre-conditions, conditions,

constraints or causes) are correctly associated with the corresponding transitions

(episode sentence or exception solution) in the Petri-Net.

According to Feasibility property of Completeness (Chapter 3), it must be

possible to perform each operation described in a scenario and each

internal/external condition must not be violated. C&L – Lua evaluates this

property by: (1) deriving a Petri-Net for each scenario, and (2) verifying that exist

at least a path from the first place (Initial state) to every Petri-Net node. The

results obtained shown that all scenarios were correctly translated to Petri-Nets,

i.e., they are feasible.

Appendix 1 details the number of Petri-Net input places, transitions and

output places generated for each Scenario pre-condition, condition, constraint,

cause, episode sentence, exception solution and post-condition, accordingly.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

186

6.4.2. Considerations about Scalability

The case studies considered in this Chapter, involve projects that specify

between 5 and 15 scenarios with different degree of complexity, i.e., every

scenario describes between 3 and 12 episodes, between 1 and 5 exceptions, and 1

concurrency construct (#<episode series>#). However, in order to evaluate the

scalability of our approach it will be necessary to verify the accuracy and response

time using larger projects.

In the literature, it is difficult to find publicly available referential

specifications to evaluate defect detection approaches. Only, Alchimowicz et al.

(2011) make available a referential use case specification containing typical

defects in industrial projects. Based on the use cases stored in UCDB (2015), they

developed a Referential Specification that has a near-typical profile, that means

that its properties is more or less what you can expect to find in real projects.

They make available this referential specification to be used for benchmarking

tools for use-case analysis.

We used the “Admission System” referential specification (Alchimowicz et

al., 2011) to evaluate the scalability of the C&L – Lua. However, they do not

make available the defects introduced in the use cases to compare with the results

obtained by our approach. “Admission System” case study is a system, which

enables candidates to apply for the studies through the Internet.

First, I translated the 34 use cases into scenario descriptions; this task is not

difficult because use case components (pre-condition, post-condition, steps and

extensions) have corresponding components in scenario language (pre-condition,

post-condition, episodes and exceptions). Table 36 shows the characteristics and

length of this case study.
Table 36 - Characteristics of the Admission System Case Study

 Admission System (34 scenarios)
Num. of episodes 161
Num. of exceptions 75
Num. of Pre-conditions/ Conditions/Causes 79
Num. of Post-conditions

Total 315

From the evaluation results, we observed that the analysis can be performed

without delays. The processing took 1 minute and 35 seconds, and detected

defects that hurt Unambiguity (Insertion of ambiguous words in sentences),

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

187

Simplicity (action-verb in incorrect tense, missing of the subject or object,

sentences containing more than one action-verb), Usefulness (actor does not

participate in sentences, too short or too long episodes), Uniqueness (scenarios

enabled by the same pre-conditions) and Liveness (never enabled exceptions).

This shows that the developed tool for defects detection handled the load,

therefore scaling to larger projects may not be an issue because of the generally

polynomial complexity of Petri-Net transformation, Petri-Net integration and NLP

Syntactic Analysis heuristics implemented in the C&L - Lua. However, more

studies should be carried out.

Other important strategy to improve the scalability of our analysis approach

is the MULTI-STEP BOTTOM-UP consistency analysis approach. This strategy

reduces the state explosion of the reachability graph for large and complex Petri-

Nets, because it analyses a large system in a compositional way.

6.5.
Threats to Validity

In order to reduce the subjectivity of the results obtained in the manual

analysis (baseline), we verified that the requirements engineers had similar

degrees of background about scenarios or scenarios inspection techniques, by

means of a questionnaire. Therefore, more studies should be carried out by

requirements engineers with non-homologous profiles.

In order to translate use case descriptions (reported in the related work) into

scenario descriptions (proposed in this thesis), manual effort are needed. In this

translation process some issues can be introduced, however this is not considered

harmful. This task is not difficult because use case components (pre-condition,

post-condition, steps and extensions) have corresponding components in scenario

language (pre-condition, post-condition, episodes and exceptions), and

step/alternative sentences are written in a similar basic grammar (a basic sentence

is composed of a 3-tuple subject-verb-object).

6.6.
Conclusion

In order to corroborate the hypothesis, we used statistical metrics to answer

the response variables. Thus, measures of the analysis results are considered

reliable.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

188

In order to generalize the results obtained in this evaluation, we used SRSs

with different degree of complexity, size, domain, common defects reported in the

industry. However more empirical experiment and detailed analysis of proposed

heuristics are advisable.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

189

7
Conclusion

Natural language based requirements specification techniques, like the

scenario language explored in this work, helps users and developers to improve

the quality at early activities of software development process. As such, the

analysis of software requirements specifications described as scenario

representations improves the quality of the product from the initial stages of

software production, contributing to the reduction of failures and the reduction of

maintenance costs after the final product was developed.

In this context, it is relevant to develop techniques that enable the automated

analysis of these scenarios, so that defects in early requirements artifacts may be

identified in way that is more efficient.

Frequently, scenario’s representations are normally informal or semi-formal

and, in these cases, they cannot be used for further automated analysis. In order to

identify defects within scenarios, it is necessary: (1) to review the scenarios using

formal inspection techniques; (2) to pre-process the scenario descriptions to

reduce the ambiguity and analyze them using Natural Language Processing

strategies; or (3) to translate the scenarios from informal to formal representations,

like Petri Nets, and simulate the behavior of them to identify consistency defects.

The assessment of quality properties in requirements artifacts has long been

investigated in requirements engineering. These are complex concepts, that

demands the fulfillment of many others characteristics in order to be achieved.

The main aim of this thesis was to develop an automated approach for

detecting defects in scenario specifications to support the analysis of the SRSs.

This aim has been achieved by: (1) modeling and organizing the properties related

to scenario’s quality; (2) distinguishing the defect indicators that hurt these quality

properties; (3) proposing operationalizations or heuristics to search these defect

indicators; (4) proposing heuristics for finding non-explicit relationships among

scenarios, and improve the analysis results; (5) investigating Natural Language

Processing techniques for automatic detection of syntactic defects; and (6)

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

190

investigating rigorous mechanisms to translate scenarios into Petri-Nets and

simulate the behavior of a set of related scenarios.

In this thesis, we introduced a novel perception of Correctness and its

complex relationships with Unambiguity, Completeness and Consistency

describing it as a quality that should be satisficed by contributions of related

qualities or properties. We also shown how the properties of: (1) Vagueness,

Subjectiveness, Optionality, Multiplicity, Quantifiability, Readabiity, Minimality,

Weakness and Implicitly contribute to Unambiguity; (2) Atomicity, Simplicity,

Uniformity, Usefulness, Conceptually Soundness, Integrity, Coherency and

Uniqueness contribute to Completeness; (3) Non-interferential, Boundedness,

Reversibility and Liveness contribute to Consistency; and (4) Unambiguity,

Completeness and Consistency contribute to Correctness. It means that addressing

these properties, we are contributing to requirements Unambiguity, Completeness,

Consistency, and consequently to Correctness.

As scenarios are written in natural language, we investigated NLP strategies

to develop mechanisms of automatic detection of structural or syntactic defects,

i.e., these mechanisms verify that scenario sentences are composed of basic

attributes like Subject, Action-Verb and Object.

In order to detect defects due to behavioral properties of a set of related

scenarios, we proposed an automated strategy to simulate and detect defects from

the execution; this strategy is based on the transformation of a set of related

scenarios into a whole consistent Petri-Net model. From this transformation, it

was possible to: (1) Define criteria to verify Feasibility, i.e., verify that is possible

derive an initial system design from a set of related scenarios; (2) analyze

behavioral properties (like reachability, boundness and liveness) of equivalent

Petri-Nets; and (3) support traceability, detecting the defects in Petri-Net models

and indicating the defects within scenarios or in their relationships.

To increase the practical meaning of the proposed methods and heuristics, a

prototype solution was developed. The prototype solution was designed and

implemented as a set of modules of the C&L – Lua (Almentero, 2009). This tool

assists the requirements engineers during the requirements modeling and analysis

phases.

To assess the quality of the results achieved by the C&L – Lua, five case

studies were carried out on a set of 75 scenarios with 661 sentences altogether.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

191

The analysis of this evaluation shows that the developed solution is reliable and

can improve the requirements quality.

7.1.
Comparison with Related Work

Many researches have shown the importance to address the problem of

finding defects in early software requirements artifacts written using Natural

Language. Some approaches propose inspection techniques with quality models to

evaluate properties of scenario specifications (Anda and Sjoberg, 2002; Leite et

al., 2005; Phalp et al., 2007); usually these approaches are manually applied by

requirements inspectors. Other approaches, in order to benefit from automated

scenarios analysis, propose the use of Natural Language Processing strategies to

analyze structural defects in scenario sentences (Ciemniewska and Jurkiewicz,

2007; Liu et al., 2014). Some research focused on developing the formal

semantics for scenario analysis (Hsia et al., 1994; Cheung et al., 2006). Others are

focusing on developing techniques to translate scenarios into executable models

and detect inconsistencies among scenarios (Lee et al., 1998; Lee et al., 2001;

Sinnig et al., 2009; Zhao and Duan, 2009; Somé, 2010).

In (Anda and Sjoberg, 2002; Leite et al., 2005; Phalp et al., 2007) are

presented approaches that address the problem of finding defects in scenarios

documents with the aid of quality models and inspection techniques. These

approaches assess the quality of the documents and to provide hints to potential

ambiguities, incompleteness and inconsistencies within the use case descriptions.

They are manually performed, and they do not provide insights for further

automation. Only Leite et al. (2005) provides some feasible heuristics for finding

defects in scenarios.

In (Ciemniewska and Jurkiewicz, 2007; Liu et al., 2014) are proposed

approaches to identify syntactic defects in use case documents (semi)

automatically with the aid of Natural Language Processing (NLP) techniques.

These approaches extract relevant information from scenario sentences and verify

that are correctly written. They use phrase parsing strategy to identify the Subject,

Action-Verb and Object of a use case sentence; and appoint incompleteness or

inconsistencies in use case descriptions. However, in order to improve the

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

192

accuracy of the phrase parser, manual effort is needed to train the parser by

providing annotated data.

In (Lee et al., 1998; Lee et al., 2001; Sinnig et al., 2009; Zhao and Duan,

2009; Somé, 2010) are proposed systematic procedures to convert use case

descriptions into Petri-Nets (or their variations) or Labeled Transition Systems -

LTS (Sinnig et al., 2009), allowing the analysis of use cases. To facilitate the

transformation, use cases are described using a semi-formal syntax. Reachability

analysis techniques are used to evaluate completeness and consistency properties

in equivalent Petri-Nets. However, in most of cases, intermediate models are

created (Lee et al., 1998; Zhao and Duan, 2009), relationships among use cases

are not considered, defects detected in Petri-Nets are not traced to scenarios, and

they are not automated. Moreover, only Lee et al. (1998) manages the state

explosion issue, a problem of Reachability Analysis.

More details of each one of these approaches are presented in Related Work
section of Chapter 2.

In contrast, our approach: (1) defines the properties that contribute to

scenarios quality, and describes defect indicators that contribute to these

properties; (2) uses a semi-structured natural language to write scenarios; (3)

presents heuristics for finding non-explicit relationships among scenarios; (4);

takes into consideration the results achieved by requirement statements and user

story analysis techniques in finding ambiguity indicators; (5) investigates NLP

techniques and linguistic characteristics in order to improve the accuracy of

parsing strategy; (6) implements automated transformation rules from scenarios

into Petri-Nets; (7) preserves the original properties of scenarios when they are

translated; (8) identifies potential concurrency defects due to non-sequential

relationships; (9) manages the state explosion in Petri-Net analysis; and (10)

demonstrates the feasibility of our proposal by implementing the proposed

heuristics and methods in a prototype tool. Finally, no additional manual effort is

needed for analysis. Table 37 compares our approach with related approaches.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

193

Table 37 - Comparing SRS Analysis Techniques

7.2.
Contribution

The proposed approach offers four major contributions:

 An automated scenarios analysis architecture: We presented an

architecture for scenarios analysis, composed by: 1) Algorithms to

transform scenario descriptions into Petri-Net models, 2) Criteria to

analyze the unambiguity, completeness, consistency and correctness of

scenario descriptions based on analysis of structural and behavioral

properties of Petri-Nets, 3) Criteria to interpret the results obtained from

Petri-Nets analysis and to allow requirements engineers reduce fault

locating time significantly in requirements at early activities of

development. Initial results of this approach have been published in

(Sarmiento et al. 2015a; Sarmiento et al. 2014e).

 A restricted-form of natural language for scenarios: We presented

semi-structured linguistic patterns for writing scenario elements, such as

 Leite et
al., 2000

Ciemniewska
and Jurkiewicz,
2007

Liu et al.,
2014

Lee et al.,
1998

Denger et
al., 2005

Zhao and
Duan, 2009

Sinnig et
al., 2009

Somé,
2010

Our approach

Scenario
Representation

Scenario Use Case Use Case; Use Case;
Action-
Condition
table;

Use Case; Use Case; Use
Case;
Use Case
diagram;

Use
Case;
Use Case
diagram;

RNL Scenario

Syntax for
Scenarios

Yes Partial Partial No Yes Yes Yes Yes Yes

Analysis
Technique

Checklist;
Heuristics

Heuristics;
NLP;

Checklist;
NLP;

Constraints-
based Modular
Petri-Net;

Checklist;
Statechart;

Timed and
Controlled
Petri-Nets;

LTS; Reactive
Petri-
Net;

Checklist;
NLP;
Place/Transition
Petri-Net;

Relationships
Among Internal
Components

Yes Yes Partial No Partial Partial Yes No Yes

Relationships
among Scenarios

Yes Partial Partial Yes Partial No Yes Partial Yes

Non-explicit
Relationships
among Scenarios

Manual Yes Yes Yes No No No No Yes

Integration of
Related Scenarios
for Whole
Analysis

No No No Yes Partial No Partial No Yes

Tool-supported No Yes Yes No Partial Partial Partial Yes Yes
State Explosion
Management

--- --- --- Slices No No No No Bottom-up
approach

Unambiguity Partial Yes Partial Partial Partial Partial Partial Partial Yes
Completeness Yes Yes Partial Yes Partial Partial Partial Partial Yes
Consistency Yes Partial Partial Yes Partial Partial Partial Partial Yes
Correctness Partial Partial No Yes Partial Partial Partial Partial Partial

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

194

episodes, exceptions, constraints and concurrency; it reduces the

ambiguity in natural language scenario descriptions; we also presented

formal heuristics for finding non-explicit relationships among scenarios.

Initial result has been published in (Sarmiento et al. 2015b).

 A Quality Model for Scenarios: The definition of a reusable Quality

Model for Scenarios, which describes the potential Defect Indicators that

contribute to properties of the Quality Model from previous related works

about requirements statements, user story, use case and scenarios

languages. Initial result has been published in (Sarmiento et al. 2015c).

 Modularity: A systematic procedure to synthesize a system design from

the resulting Petri-Nets of related scenarios, which manages the State

Explosion Issue. State explosion issue is a serious problem when applying

Petri-Net analysis to large systems. A contribution of this thesis is a

MULTI-STEP BOTTOM-UP analysis approach to manage this problem.

Initial result has been published in (Sarmiento et al. 2015a).

Our scenario analysis approach can be applied to a set of scenarios of a

project or individual scenarios. When it is applied to a specific scenario, the

analysis is carried out on the selected scenario and its related scenarios. So that,

the impact among related scenarios are analyzed and defects into the relationships

are identified. Therefore, our analysis approach can be used with incremental

software development strategies and it also contributes to better understand

scenarios evolution and their impacts.

7.3.
Limitation

The transformation procedure from scenarios into Petri-Nets works well if a

requirements engineer can properly write scenarios using the syntax and semantic

rules described in this thesis, i.e. following the linguistic patterns and putting the

correct markers (IF THEN, Constraint, and so on) on sentences, It is our

assumption that the use of Restricted-form of Natural Language scenarios is well

accepted by the most stakeholders in RE process, and it is amenable to automated

processing.

The scalability of Petri-Net model and the state explosion of the generated

reachability graph are limitations, however these limitations are overcame because

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

195

the proposed analysis approach is scalable; the analysis of a large and complex

system can be performed in a compositional way, i.e., a MULTI-STEP

BOTTOM-UP analysis approach.

The Part-Of-Speech tagger is written in JavaScript programming language,

thus the parser memory usage expands roughly with the square of the sentence

length. Although, we considered case studies with typical defects and length of

industrial scenarios, additional experiments with the requirements taken from the

industry could be helpful.

7.4.
Future Work

The C&L prototype tool has been used and evolved by the PUC - Rio

requirements engineering group. Methods for model transformation and syntactic

analysis using NLP are being improved. Their results are positive and therefore its

evolution continues.

In the future, we plan investigating other properties related to the main

qualities considered; and instantiate the Quality Model used in this thesis to use

case language proposed by Cockburn (2001) or its variations.

In a future research, we will explore to enrich our approach by considering

semantic analysis. The WordNet (2015) database can be inspected to provide

additional information like synonymous of the “Nouns” and “Verbs” of POS

tagging phase; and improve the accuracy of the parsing strategy and syntactic

similarity heuristic.

Moreover, as a future research direction, we intend to extend the approach

to analyze scenarios written in other languages, e.g. Portuguese.

Other future research plan will consider investigating strategies, which

automatically traverse the Petri-Net model and its reachability graph to generate

test scenarios based on path analysis strategies. This strategy will take into

account interactions by “shared resources” or “message passing”. Initial results of

this approach have been published in (Sarmiento et al. 2015d; Sarmiento et al.

2014e).

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

196

References

ALCHIMOWICZ, B.; JURKIEWICZ, J.; NAWROCKI, J.; OCHODEK, M.
Towards use-cases benchmark. In: Software engineering techniques.
Lecture notes in computer science, Springer-Verlag, v. 4980, Heidelberg,
p 20–33, 2011.
ALMENTERO, E.; LEITE, J. C. S. P.; LUCENA, C. Towards Software
Modularization from Requirements, In: ACM symposium on Applied
Computing, 2014. Proceedings of ACM symposium on Applied
Computing, 2014.
ALMENTERO, E. Re-engenharia do software C&L para plataforma Lua-
Kepler utilizando princípios de transparência. Master Thesis, PUC-Rio,
Brazil, 2009.
AL-OTAIBY, T. N.; ALSHERIF, M.; BOND, W. P. Toward software
requirements modularization using hierarchical clustering techniques. In:
Annual Southeast Regional Conference, 2005. Proceedings of the 43rd
annual southeast regional conference, 2005, p. 223-228.
ANDA, B.; SJØBERG, D. I. Towards an inspection technique for use case
models. In: International conference on Software engineering and
knowledge engineering, 2002. Proceedings of the 14th international
conference on Software engineering and knowledge engineering, 2002, p.
127-134.
ANDA, B.; HANSEN, K.; SAND, G. An investigation of use case quality in
a large safety-critical software development project. Information and
Software Technology, v. 51, n. 12, p. 1699-1711, 2009.
ANDERSSON, M.; BERGSTRAND, J. Formalizing Use Cases with
Message Sequence Charts. 1995. Master’s thesis, Lund Inst. of
Technology.
ALEXANDER, I. F.; MAIDEN, N. Scenarios, stories, use cases: through
the systems development life-cycle. John Wiley & Sons, 2005.
ARORA, C.; SABETZADEH, M.; BRIAND, L.; ZIMMER, F. Automated
checking of conformance to requirements templates using natural
language processing. IEEE TSE, 2015.
BANSAL, S. Text data cleaning steps python. 2014. Available at:
http://www.analyticsvidhya.com/blog/2014/11/text-data-cleaning-steps-
python/
BASILI, V.; ROMBACH, H. D. “The TAME Project: Towards Improvement-
Oriented Software Environments”. IEEE Trans. on Software Engineering,
v. 14, n. 6, pp. 758-773, 1988.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

197

BERNSTEIN, L.; YUHAS, C. M. Trustworthy Systems Through
Quantitative Software Engineering. Wiley-IEEE Computer Society Press,
2005.
BERRY, D.; GACITUA, R.; SAWYER, P.; TJONG, S. “The Case for Dumb
Requirements Engineering Tools”. Requirements Engineering: Foundation
for Software Quality, Springer, v. 7195, p. 211–217, 2012.
BOEHM, B. W. "Guidelines for verifying and validating software
requirements and design specifications". In: European Conf. Applied
Information Technology, 1979. Proceedings of European Conf. Applied
Information Technology, 1979, p. 711-719.
BOEHM, B.; BASILI, V. R. Software Defect Reduction Top 10 List.
Computer, v. 34, n. 1, p.135-137, 2001.
CABRAL, G.; SAMPAIO, A. Formal specification generation from
requirement documents. In: Brazilian Symposium on Formal Methods
(SBMF), 2006. Proceedings of Brazilian Symposium on Formal Methods
(SBMF), 2006, p. 217–232.
 CAMBRIDGE. 2015. Available at:
http://dictionary.cambridge.org/grammar/british-grammar/verbs-types
C&L, Scenarios & Lexicons. 2015. Available at: http://pes.inf.puc-rio.br/cel.
CHEUNG, K. S.; CHEUNG, T. Y.; CHOW, K. O. A petri-net-based
synthesis methodology for use-case-driven system design. J. Syst. Softw.
v. 79, n. 6, p. 772-790, 2006.
CHUNG, L.; NIXON, B.A.; YU, E.; MYLOPOULOS, J. Non-Functional
Requirements in Software Engineering. Boston: Kluwer Academic
Publishers, 2000.
COHN, M. User Stories Applied: for Agile Software Development.
Redwood City: Addison Wesley Longman Publishing Co., Inc., 2004.
COMPENDIUM-JS. 2015. Available at:
https://github.com/Ulflander/compendium-js
COX, K.; AURUM, A.; JEFFERY, R. A use case description inspection
experiment. In: Australian workshop on software requirements, Sydney,
Australia, 2003. Proceedings of Australian workshop on software
requirements, 2003.
DAMAS, C.; LAMBEAU, B.; LAMSWEERDE, A. V. Scenarios, goals, and
state machines: a win-win partnership for model synthesis. In: ACM
SIGSOFT international symposium on Foundations of software
engineering, 2006. Proceedings of 14th ACM SIGSOFT international
symposium on Foundations of software engineering, ACM, New York, NY,
USA, 2006, p. 197-207.
DAMM, W.; HAREL, D. "LSCs: Breathing Life into Message Sequence
Charts". Formal Methods in System Design, v. 19, n. 1, p. 45-80, 2001.
DENGER, C.; PAECH, B.; FREIMUT, B. Achieving high quality of use-
case-based requirements. Informatik-Forschung und Entwicklung, v. 20, n.
1, p. 11-23, 2005.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

198

DOWNEY, A. B. The Little Book of Semaphores. Green Tea Press, 2005.
Available at: http://greenteapress.com/semaphores.
EASTERBROOK, S. “The Difference between verification and validation”,
2010. Available at: http://www.easterbrook.ca/steve/2010/11/the-
difference-between-verification-and-validation/
ESHUIS, R.; DEHNERT, J. Application and Theory of Petri Nets.
LNCS 2679, 2003, p. 295-314.
FEMMER, H.; FERNÁNDEZ, D. M.; JUERGENS, E.; KLOSE, M.;
ZIMMER, I.; ZIMMER, J. Rapid requirements checks with requirements
smells: two case studies. In: International Workshop on Rapid Continuous
Software Engineering, 2014. Proceedings of the 1st International
Workshop on Rapid Continuous Software Engineering, ACM, 2014, p. 10-
19.
GATE. 2015. Available at: https://gate.ac.uk/
GLINZ, M. Improving the quality of requirements with scenarios, In: World
Congress for Software Quality(2WCSQ), 2000, Yokohama. Proceedings of
the Second World Congress for Software Quality (2WCSQ), 2000, p. 55-
60.
GNESI, S.; FABBRINI, F.; FUSANI, M.; TRENTANNI, G. An automatic tool
for the analysis of natural language requirements. CSSE Journal, v. 20, n.
1, p. 53-62, 2005.
 GRAMMARING. 2015. Available at: http://www.grammaring.com/state-
verbs-and-action-verbs
GUTIÉRREZ, J. J.; CLÉMENTINE, N.; ESCALONA, M. J.; MEJÍAS, M.;
RAMOS, I. M. Visualization of Use Cases through Automatically
Generated Activity Diagrams. In: CZARNECKI, K.; OBER, I.; BRUEL, J.
M.; UHL, A.; VÖLTER, M. (eds.) MODELS, 2008, Heidelberg: LNCS,
Springer, v. 5301, p. 83–96, 2008.
HAREL, D. StateCharts: a visual formalism for complex systems.
SciComput Program, v. 8, n. 3, p. 231-274, 1987.
HEITMEYER, C. Formal methods for specifying, validating, and verifying
requirements. J Univ Comput Sci, v. 13, n. 5, 2007, p. 607-618.
HSIA, P.; SAMUEL, J.; GAO, J.; KUNG, D.; TOYOSHIMA, Y.; CHEN, C.
Formal Approach to Scenario Analysis. IEEE Software, p. 33-41, 1994.
KELLER, R. Formal Verification of Parallel Programs. Communications of
the ACM, v. 19, n. 7, p. 561-572, 1976.
KEPLER PROJECT. 2009. Available at: https://github.com/keplerproject
KLEIN, D.; MANNING, C. D. Accurate unlexicalized parsing. In: Annual
Meeting on Association for Computational Linguistics – ACL’03, 2003.
Proceedings of the 41st Annual Meeting on Association for Computational
Linguistics, 2003, p. 423-430.
IEEE Computer Society. IEEE Recommended Practice for Software
Requirements Specications. Technical report, 1998.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

199

IERUSALIMSCHY, R. Programming in Lua. Lua.org, 3 edition, 2013.
ISO/IEC 14977. Extended Backus–Naur Form. 2015. Available at:
http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_
14977_1996(E).zip
ISO, IEC, and IEEE. ISO/IEC/IEEE 29148:2011. Technical report, ISO
IEEE IEC, 2011.
LEE, W.; CHA, S.; KWON, Y. Integration and analysis of use cases using
Modular Petri Nets in requirements engineering. IEEE Trans. on Software
Engineering, v. 24, n. 12, p. 1115-1130, 1998.
LEE, J.; PAN, J. I.; KUO, J.Y. Verifying scenarios with time petri-nets. Inf.
Softw. Technol., v. 43, n. 13, p. 769-781, 2001.
LEITE, J. C. S. P.; HADAD, G; DOORN, J.; KAPLAN, G. A scenario
construction process, Requirements Engineering Journal, Springer-Verlag
London Limited, v. 5, n. 1, p. 38-61, 2000.
LEITE, J. C. S. P.; DOORN, J. H.; HADAD, G. D.; KAPLAN, G. N.
Scenario inspections. Requirements Engineering, v. 10, n. 1, p. 1-21,
2005.
LEITE, J. C. S. P. Livro Vivo: Engenharia de Requisitos. Available at:
http://livrodeengenhariaderequisitos.blogspot.com/, 2007.
LEVENSHTEIN, V. I. "Binary codes capable of correcting deletions,
insertions, and reversals". Soviet Physics Doklady, v. 10, n. 8, p. 707-710,
1966.
LIU, S.; SUN, J.; LIU, Y.; ZHANG, Y.; WADHWA, B.; DONG, J. S.; WANG,
X. Automatic early defects detection in use case documents. In:
ACM/IEEE international conference on Automated software engineering,
2014. Proceedings of the 29th ACM/IEEE international conference on
Automated software engineering, 2014, p. 785-790.
LUCASSEN, G.; DALPIAZ, F.; BRINKKEMPER, S.; VAN DER WERF, J.
M. E. M. Forging High-Quality User Stories: Towards a Discipline for Agile
Requirements. In: IEEE International Requirements Engineering
Conference, 2015. Proceedings of the IEEE International Requirements
Engineering Conference, 2015, p. 126-135.
MAVIN, A.; WILKINSON, P.; HARWOOD, A.; NOVAK, M. “Easy approach
to requirements syntax (EARS)”. In: IEEE International Requirements
Engineering Conference (RE’09), 2009. Proceedings of 17th IEEE
International Requirements Engineering Conference (RE’09), 2009, p.
317-322.
MURATA, T. Petri nets: Properties, analysis and applications. Proceedings
of the IEEE, v. 77, n. 4, p. 541-580, 1989.
NLTK. 2015. Available at: http://text-processing.com/demo/tag/
NOUNANDVERB. Words that are also nouns. 2015. Available at:
http://www.enchantedlearning.com/wordlist/nounandverb.shtml
OLSON, D. Advanced data mining techniques. Springer Verlag, 2008.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

200

OPENNLP. 2015. Available at: http://opennlp.apache.org/
PHALP, K. T.; VINCENT, J.; COX, K. Assessing the quality of use case
descriptions. Software Quality Journal, v. 15, n. 1, p. 69-97, 2007.
PIPE2. Platform Independent Petri net Editor 2. 2015. Available at
http://pipe2.sourceforge.net.
POHL, K. The three dimensions of requirements engineering: a framework
and its applications. Information Systems Journal, v. 19, n. 3, p. 243-258,
1994.
POHL, K.; RUPP, C. Requirements Engineering Fundamentals, 1st ed.
Rocky Nook, 2011.
SARMIENTO, E.; BORGES, M. R. S.; CAMPOS, M. L. M. Applying an
event-based approach for detecting requirements interaction, In:
International Conference on Enterprise Information Systems (ICEIS 2009),
2009.
SARMIENTO, E.; ALMENTERO, E.; LEITE, J. C. S. P. C&L: Generating
Model Based Test Cases From Natural Language Requirements
Descriptions In: IEEE International Workshop on Requirements
Engineering and Testing - RET'2014, Sweden, 2014.
SARMIENTO, E.; LEITE, J. C. S. P.; RODRIGUEZ, N.; VON STAA, A. An
Automated Approach of Test Case Generation for Concurrent Systems
from Requirements Descriptions. In: XVI International Conference on
Enterprise Information Systems (ICEIS 2014), Portugal, 2014.
SARMIENTO, E.; ALMENTERO, E.; LEITE, J. C. S. P. Analysis of
scenarios with Petri-Net models, In: Brazilian Symposium on Software
Engineering - SBES, 2015.
SARMIENTO, E.; ALMENTERO, E; LEITE, J. C. S. P.; SOTOMAYOR, G.
Mapping Textual Scenario to Analyzable Petri-Nets. In: XVII International
Conference on Enterprise Information Systems (ICEIS 2015), Spain, 2015.
SARMIENTO, E.; ALMENTERO, E.; LEITE, J. C. S. P. Using Correctness,
Consistency and Completeness Patterns for Automated Scenarios
Analysis. In: 5th IEEE Workshop of Requirements Engineering Patterns -
RePa, Canada, 2015.
SINHA, A.; SUTTON, S. M.; PARADKAR, A. Text2Test: Automated
inspection of natural language use cases. In: International Conference on
Software Testing, Verification and Validation (ICST), 2010. Proceedings of
Third International Conference on Software Testing, Verification and
Validation, 2010, p. 155-164.
SINNIG, D.; CHALIN, P.; KHENDEK, F. LTS semantics for use case
models. In: ACM symposium on Applied Computing, 2009. Proceedings of
ACM symposium on Applied Computing, 2009, p. 365-370.
SOMÉ, S. S. Formalization of textual use cases based on petri nets.
International Journal of Software Engineering and Knowledge
Engineering, v. 20, n. 05, p. 695-737, 2010.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

201

SOMMERVILLE, I. Software Engineering. 9 ed. Boston: Addison-Wesley,
2010.
STANFORD. 2015. Available at: http://nlp.stanford.edu
RAGO, A.; MARCOS, C.; DIAZ-PACE, J.A. Identifying duplicate
functionality in textual use cases by aligning semantic actions. Software &
Systems Modeling, p. 1-25, 2014.
REISIG, W. Petri Nets: An Introduction. Heidelberg: Springer-Verlag,
1985.
ROSCOE, A. W. The Theory and Practice of Concurrency. Prentice Hall,
1998.
ROSS, D. T. Structured Analysis (SA): A Language for Communicating
Ideas. IEEE Transactions on Software Engineering, v. 3, n. 1, p. 16-34,
1977.
TJONG, S. F. Avoiding ambiguity in requirements specifications, 2008.
PhD thesis, University of Nottingham Malaysia Campus, Faculty of
Engineering & Computer Science, Malaysia.
TREEBANK. 2015. Available at: http://www.cis.upenn.edu/~treebank/
UCDB, 2015. Available at: http://www.se.cs.put.poznan.pl/knowledge-
base/software-projects-database/use-cases-database-ucdb
UML. Object Management Group, 2015. Available at:
http://www.omg.org/spec/UML/
 USINGENGLISH. 2015. Available at:
http://www.usingenglish.com/glossary/copula-verb.html
VAN LAMSWEERDE, A.; WILLEMET, L. Inferring declarative
requirements specifications from operational scenarios. IEEE Transactions
on Software Engineering, v. 24, n. 12, p. 1089-1114, 1998.
VAN LAMSWEERDE, A. Goal-oriented requirements engineering: a
guided tour. In: Symposium on Requirements Engineering, 2001, Toronto.
Proceedings of fifth IEEE International Symposium on Requirements
Engineering, 2001, p. 249–262.
WILSON, W. M.; ROSENBERG, L. H.; HYATT, L. E. Automated Analysis
of Requirement Specifications. In: International Conference on Software
Engineering (ICSE-97), 1997. Proceedings of Nineteenth International
Conference on Software Engineering, Boston, 1997.
WORDNET. 2015. Available at: https://wordnet.princeton.edu/
ZHAO, J.; DUAN, Z. Verification of use case with petri nets in requirement
analysis. Computational Science and Its Applications-ICCSA, 2009, p. 29-
42.
ZOWGHI, D.; GERVASI, V. “On the Interplay Between Consistency,
Completeness, and Correctness in Requirements Evolution”. Information
and Software Technology, v. 45, p. 993-1009, 2003.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

202

Appendix A1
Referential Specification Used as Baseline

The following scenario descriptions detail the behavior perceived in four

systems used in the literature as baseline or referential specification to evaluate

the accuracy of defect detection approaches in use cases or scenarios: Online

Broker System (Somé, 2010), ATM use cases (Cox et al., 2003), Dlibra CRM

(Ciemniewska and Jurkiewicz, 2007) and Mobile News (Ciemniewska and

Jurkiewicz, 2007).

The highlighted words or phrases within internal scenario elements (Title,

Goal, Context, Resource, Actor, Episodes, Exception), are defect indicators

manually detected by Requirements Engineers from the documents, which act as

the baseline for the evaluation of our automated analysis approach.

When a defect is detected within scenario element, it is detailed in a new

line after the scenario element using the following format: (<Property> - <Type

Defect> : <Detail>), where “Property” is the quality negatively impacted by the

defect, “Type Defect” is the classification of the defect, and “Detail” gives a

description of the defect for fixing.

Based on Olson (2008), a defect or error can be classified as following:

 True Positive (TP): A defect is identified by the experts and is detected by

the approach (Defect occurs).

 True Negative (TN): A defect is not identified by the experts and is not

detected by the approach (Defect does not occur).

 False Positive (FP): A defect is not identified by the experts and is

detected by the approach (Defect does not occur).

 False Negative (FN): A defect is identified by the experts and is not

detected by the approach (Defect occurs).

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

203

A1.1
The Online Broker System

Table 38 shows the quantitative analysis in scenarios (Pre-conditions, Post-

conditions, Episodes, Exceptions) from Online Broker System, and how they are

mapped into Petri-Net elements (Input places, Output places, Transitions).
Table 38 - Quantitative Analysis of Online Broke System

ID
Scenario

Scenario Num. Pre-
conditions/Conditions/
Causes/Constraints

Num.
Post-
conditions

Num.
Episodes

Num.
Exceptions

Num.
Input
Places -
Petri-Net

Num.
Transitions
- Petri-Net

Num.
Output
Places -
Petri-Net

Num.
Dummy
Places -
Petri-Net

1 Handle
Payment

1 0 4 1 1 5 0 7

2 International
Supplier bid for
order

3 1 3 2 3 5 1 7

3 Local Supplier
bid for order

2 1 4 1 2 5 1 7

4 Process Bids 2 0 4 0 2 4 0 6
5 Register

Customer
1 0 5 1 1 6 0 8

6 Submit Order 6 0 12 4 6 16 0 18
Total 15 2 32 9 15 41 2 53

Table 39 shows the Unambiguity analysis (qualitative) in scenarios (Title,

Goal, Episodes, Exceptions) from Online Broker System. Let TP be the number

of defects detected correctly by out analysis approach; FP be the number of

defects detected incorrectly (defect does not occur); FN be the number of defects

that are not detected (defect occurs).
Table 39 – Unambiguity Analysis of Online Broke System

Vague Subjective Optional Weak Multiple Implicit Quantifiable Scenario
TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN

1 1

2 1

3 2

4

5 1

6 1 1

Total 1 0 0 0 0 0 0 0 0 0 0 0 3 1 0 2 0 0 0 0 0

Table 40 shows the Completeness analysis (qualitative) in scenarios (Title,

Goal, Episodes, Exceptions) from Online Broker System.
Table 40 - Completeness Analysis of Online Broke System

Atomicity Simplicity Uniformity Usefulness Conceptually
Soundness

Integrity Coherency Uniqueness ID
Scenario

TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN

1 1

2 1 1 1 2

3 2 1 1 2

4 1 1

5 1

6 1 3 1

Total 0 0 0 7 0 0 0 0 0 6 0 0 3 0 0 0 0 0 0 0 0 4 0 0

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

204

Table 41 shows the Consistency analysis (qualitative) in scenarios and

related scenarios from Online Broker System.
Table 41 - Consistency Analysis of Online Broke System

ID Scenario Non-interferential Boundedness Reversibility Liveness
 TP FP FN TP FP FN TP FP FN TP FP FN

1
2 1
3 1
4
5
6

Total 2 0 0 0 0 0 0 0 0 0 0 0

TITLE: Handle Payment
GOAL: Handle Payment
CONTEXT: Handle payment for a Bid
 PRE-CONDITION:
 POST-CONDITION:
ACTOR: Customer, Broker System, Payment System
RESOURCES: Credit card information
EPISODES
 1. The Broker System asks the Customer for Credit Card information
 2. The Customer provides her Credit Card information
(Implicit - TP: ambiguous indicator)
 3. The Broker System asks a Payment System to process the Customer’s Payment.
(Simplicity - TP: Contains more than one Action-Verb)
 4. The Broker System displays an acknowledgement message to the Customer
EXCEPTIONS
 1.1 IF The Customer Payment is denied THEN The Broker System displays a payment denied
page

TITLE: International Supplier bid for order
(Soundness - TP: Title does not describe the Goal)
(Non-interferential - TP: Simultaneous enabled with Local Supplier)
 (Uniqueness - TP: Local Supplier bid for order and International Supplier bid for order are
potentially duplicated)
GOAL: Submit a bid
CONTEXT: Create a Bid for an Order

 PRE-CONDITION: An Order has been broadcasted
(Uniqueness - TP: Context Pre-condition coincidence with Related scenario’s Local Supplier)
 POST-CONDITION: International Supplier has bidden
ACTOR: International Supplier, Broker System
RESOURCES: Order, Bid
EPISODES
 1. International Supplier receives the Order and examines it
(Multiplicity - TP: ambiguous indicator)
(Simplicity - TP: Contains more than one Action-Verb)
 2. International Supplier submits a Bid for the Order
 3. The Broker System sends the Bid to the Customer

(Usefulness - TP: Actor/Resource mentioned in episode is not included in the Actor/Resource
element)

EXCEPTIONS
 1.1 IF The Order includes items restricted for exportation THEN International Supplier passes
on the Order
 1.2 IF International Supplier can not satisfy the Order THEN International Supplier passes on
the Order

TITLE: Local Supplier bid for order

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

205

(Soundness - TP: Title does not describe the Goal)
(Non-interferential - TP: Simultaneous enabled with International Supplier)
 (Uniqueness - TP: Local Supplier bid for order and International Supplier bid for order are
potentially duplicated)
GOAL: Submit a bid
CONTEXT: Create a Bid for an Order

 PRE-CONDITION: An Order has been broadcasted
(Uniqueness - TP: Context Pre-condition coincidence with Related scenario’s International
Supplier)
 POST-CONDITION: Local Supplier has bidden
ACTOR: Local Supplier, Broker System, Customer
RESOURCES: Order, Bid
EPISODES
 1. Local Supplier receives the Order and examines it
(Multiplicity - TP: ambiguous indicator)
(Simplicity - TP: Contains more than one Action-Verb)
 2. Local Supplier determines the applicable taxes to the order and creates a bid.
(Multiplicity - TP: ambiguous indicator)
(Simplicity - TP: Contains more than one Action-Verb)
 3. Local Supplier submits a Bid for the Order
 4. The Broker System sends the Bid to the Customer.

(Usefulness - TP: Actor/Resource mentioned in episode is not included in the Actor/Resource
element)

EXCEPTIONS
 1.1 IF Local Supplier can not satisfy the Order THEN Local Supplier passes on the Order

TITLE: Process Bids
GOAL: Process a bid
CONTEXT: Process a Bid for an Order
 PRE-CONDITION: Local Supplier has bidden OR International Supplier has bidden
ACTOR: Customer, Broker System
(Usefulness - TP: never participates in episodes)
RESOURCES: Order, Bid
EPISODES
 1. Customer examines the bid
 2. Customer signals the system to proceed with bid
 3. HANDLE PAYMENT
 4. System put an order with the selected bidder
(Simplicity - TP: Missing Action-Verb in Present Tense form)

TITLE: Register Customer
GOAL: Register Customer
CONTEXT: login page loaded
 PRE-CONDITION:
 POST-CONDITION:
ACTOR: Customer, Broker System
RESOURCES: registration operation, name, date of birth, address, login information
EPISODES
 1. Customer selects registration operation
 2. Broker System asks for Customer name, date of birth and address
(Multiplicity - FP: ambiguous indicator)
 3. Customer enters registration information
 4. Broker System validates Customer information
 5. Broker System generate login information for Customer
(Simplicity - TP: Missing Action-Verb in Present Tense form)
EXCEPTIONS
 4.1. IF Customer registration information is not valid THEN Broker System displays registration
failure page

TITLE: Submit Order

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

206

(Soundness: Title does not describe the Goal)
GOAL: Allow customers to find the best supplier for a given order.
CONTEXT:
 PRE-CONDITION: The Broker System is online AND the Broker System welcome page is
being displayed
ACTOR: Customer, Broker System
RESOURCES: Login page, Login information, Order
EPISODES
(Usefulness - TP: Too long scenario - Num. episodes > 10)
 1. The Customer loads the login page
 2. The Broker System asks for the Customer’s login information
 3. The Customer enters her login information
(Implicit - TP: ambiguous indicator)
 4. The Broker System checks the provided login information
(Vagueness - TP: ambiguous indicator)
 5. The Broker System displays an order page
 6. The Customer creates a new Order
 7. DO the Customer adds an item to the Order WHILE the Customer has more items to add to
the order
 8. The Customer submits the Order
 9. The Broker System broadcast the Order to the Suppliers
(Simplicity - TP: Missing Action-Verb in Present Tense form)
 10. # LOCAL SUPPLIER BID FOR ORDER.
(Usefulness - TP: Actor/Resource mentioned in episode is not included in the Actor/Resource
element)
 11. INTERNATIONAL SUPPLIER BID FOR ORDER #
(Usefulness - TP: Actor/Resource mentioned in episode is not included in the Actor/Resource
element)
 12. PROCESS BIDS
EXCEPTIONS
 1.1 IF Customer is not registered THEN REGISTER CUSTOMER
 2.1 IF after 60 seconds THEN The Broker System displays a login timeout page.
 4.1 IF the Customer login information is not accurate THEN The Broker System displays an
alert message
 8.1 IF the order is empty THEN The Broker System displays an error message

A1.2
The ATM System

Table 42 shows the quantitative analysis in scenarios (Pre-conditions, Post-

conditions, Episodes, Exceptions) from ATM System , and how they are mapped

in Petri-Net elements (Input places, Output places, Transitions).
Table 42 - Quantitative Analysis of ATM System

ID
Scenario

Scenario
Num. Pre-
conditions/Conditions/
Causes/Constraints

Num.
Post-
conditions

Num.
Episodes

Num.
Exceptions

Num.
Input
Places
- Petri-
Net

Num.
Transitions
- Petri-Net

Num.
Output
Places -
Petri-
Net

Num.
Dummy
Places -
Petri-
Net

1 ACCESS ATM 1 3 6 1 1 7 3 9
2 CHANGE PIN 2 2 7 1 2 8 2 10
3 CHECK BALANCE 2 2 5 1 2 6 2 8
4 MAKE DEPOSIT 2 1 4 1 2 5 1 7
5 WITHDRAW

CASH 1 1 11 1 1 12 1 14
Total 8 9 33 5 8 38 9 48

Table 43 shows the Unambiguity analysis (qualitative) in scenarios (Title,

Goal, Episodes, Exceptions) from ATM System. Let TP be the number of defects

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

207

detected correctly by out analysis approach; FP be the number of defects detected

incorrectly (defect does not occur); FN be the number of defects that are not

detected (defect occurs).
Table 43 – Unambiguity Analysis of ATM System

Vague Subjective Optional Weak Multiple Implicit Quantifiable Scenario
TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN

1 1 1
2 3
3 2
4
5 2
Total 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 8 0 0 0 0 0

Table 44 shows the Completeness analysis (qualitative) in scenarios (Title,

Goal, Episodes, Exceptions) from ATM System.
Table 44 - Completeness Analysis of ATM System

Atomicity Simplicity Uniformity Usefulness Conceptually
Soundness

Integrity Coherency Uniqueness ID
Scenario

TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN
1 1 1 1
2 3 1
3 1
4 1 1
5 2 1 1 1
Total 0 0 0 7 1 0 2 0 0 2 0 0 0 3 0 0 0 0 0 0 0 0 0 0

Table 45 shows the Consistency analysis (qualitative) in scenarios and

related scenarios from ATM System.
Table 45 - Consistency Analysis of ATM System

ID Scenario Non-interferential Boundedness Reversibility Liveness
 TP FP FN TP FP FN TP FP FN TP FP FN
1 1
2
3
4
5 1
Total 0 0 0 0 0 0 0 0 0 2 0 0

TITLE: ACCESS ATM
GOAL: User access the ATM.
Context: User wants to use the ATM.
 Pre-condition: ATM in ready state for new User
 Post-condition: User access granted AND PIN AND card validated.
ACTOR: User
RESOURCE: ATM, card, PIN, account
EPISODES:
 1. User inserts card into ATM.
 2. ATM asks for a PIN.
 3. User types in the numbers of his PIN and presses the Enter button
(Multiplicity - TP: ambiguous indicator)
(Implicit - TP: ambiguous indicator)
(Simplicity - TP: Contains more than one Action-Verb)
 4. ATM asks for account type.
 5. Customer selects account.
(Usefulness - TP: Actor/Resource mentioned in episode is not included in the Actor/Resource
element)
 6. ATM displays User options.
EXCEPTION:

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

208

 4.1. ATM rejects unidentifiable card.
(Uniformity - TP: Incomplete Cause)
(Liveness - TP: Never enabled transition)

TITLE: CHANGE PIN
GOAL: User wants to change their PIN.
(Implicit - TP: ambiguous indicator)
Context:
 Pre-condition: User already logged onto the ATM
 Post-condition: New PIN read to card and Bank account
ACTOR: User
RESOURCE: ATM, PIN
EPISODES:
 1. User selects Change PIN.
 2. ATM prompts her to enter new PIN.
(Implicit - TP: ambiguous indicator)
(Simplicity - TP: Contains more than one Action-Verb)
 3. It enters new PIN.
(Implicit - TP: ambiguous indicator)
(Simplicity - TP: Missing Subject)
 4. ATM prompts User to re-enter new PIN.
 5. User re-enters new PIN.
(Simplicity - FP: Contains more than one Subject, Missing Action-Verb)
 6. ATM displays New PIN Successful message.
 7. ATM displays list of options.
EXCEPTION:
 4.1. IF ATM refuses new PIN THEN User asked to re-enter new PIN.
 (Simplicity - TP: Missing Action-Verb in Present Tense form)

TITLE: CHECK BALANCE
 (Soundness - FP: Title does not describe the Goal)
GOAL: The User wants to check their account balance before withdrawing money.
(Implicit - TP: ambiguous indicator)
Context:
 Pre-condition: User already logged onto the ATM.
 Post-condition: Balance no longer displayed AND ATM ready for a transaction.
ACTOR: User, Bank
RESOURCE: ATM, account
EPISODES:
 1. User selects balance of account.
 2. User selects On Screen option.
 3. ATM displays current balance on screen.
 4. Bank retrieves User’s current balance from their account.
(Implicit - TP: ambiguous indicator)
 5. ATM prompts for new option.
EXCEPTION:

2.1. IF User selects On Paper option THEN ATM prints balance on receipt.

TITLE: MAKE DEPOSIT
(Soundness - FP: Title does not describe the Goal)
GOAL: The User wants to deposit cash into the ATM
Context:
 Pre-condition: The User has logged onto the ATM .
 Post-condition: ATM ready for a new transaction.
ACTOR: User
RESOURCE: ATM, envelope, deposit
EPISODES:
 1. User selects Deposit.
 2. Selects envelope
(Simplicity - TP: Missing Subject)

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

209

 3. ATM accepts deposit
 4. User takes deposit receipt.
EXCEPTION:
 3.1. IF ATM rejects deposit envelope THEN ATM signals User of rejection.

TITLE: WITHDRAW CASH
(Soundness - FP: Title does not describe the Goal)
GOAL: User wants to withdraw money.
Context: User wants to use the ATM.
 Pre-condition: User has already logged onto the ATM.
 Post-condition: ATM ready for next User.
ACTOR: User, Bank
RESOURCE: ATM, account, card

EPISODES:
(Usefulness - TP: Too long scenario - Num. episodes > 10)

 1. User selects Withdraw Cash.
 2. ATM prompts for amount.
 3. User enters amount.
 4. ATM verifies with the Bank that the User has enough money in account.
(Implicit - TP: ambiguous indicator)
 4.1 If insufficient funds in her account,
(Implicit - TP: ambiguous indicator)
(Simplicity - TP: Nested Episode Sentence must be treated by a scenario)
 4.2 ATM returns card to User.
 4.3 User takes card.
 5. ATM releases cash.
 6. User takes cash.
 7. ATM releases card.
 8. User takes card.
(Simplicity - TP: Episode Sentence coincidence with episode “4.3”)
EXCEPTION:
 7.1. ATM eats card.
(Uniformity - TP: Incomplete Cause)
(Liveness - TP: Never enabled transition)

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

210

A1.3
DLibra CRM

Table 46 shows the quantitative analysis in scenarios (Pre-conditions, Post-

conditions, Episodes, Exceptions) from Online Broker System, and how they are

mapped in Petri-Net elements (Input places, Output places, Transitions).
Table 46 - Quantitative Analysis of Online Broke System

ID
Scenario

Scenario Num. Pre-
conditions/Conditions/
Causes/Constraints

Num. Post-
conditions

Num.
Episodes

Num.
Exceptions

Num.
Input
Places -
Petri-Net

Num.
Transitions -
Petri-Net

Num.
Output
Places -
Petri-Net

Num.
Dummy
Places -
Petri-Net

1 Add a new
client

4 0 4 3 4 7 0 9

2 Add a new
contract

3 0 6 2 3 8 0 10

3 Add a new
installation

3 0 6 2 3 8 0 10

4 Browse
clients

1 0 6 1 1 7 0 9

5 Browse
information

1 0 6 1 1 7 0 9

6 Delete client 1 0 4 1 1 5 0 7
7 Delete

contract
1 0 4 1 1 5 0 7

8 Delete
installation

1 0 4 1 1 5 0 7

9 Edit client
data

4 0 4 3 4 7 0 9

10 Edit contract 3 0 6 2 3 8 0 10
11 Edit

installation
3 0 6 2 3 8 0 10

12 Log in to the
system

2 0 4 1 2 5 0 7

13 Prepare a
report

1 0 7 1 1 8 0 10

14 Request for
licence

3 0 8 3 3 11 0 13

15 Search 2 0 5 2 2 7 0 9
Total 33 0 80 26 33 106 0 136

Table 47 shows the Unambiguity analysis (qualitative) in scenarios (Title,

Goal, Episodes, Exceptions) from Dlibra System. Let TP be the number of defects

detected correctly by out analysis approach; FP be the number of defects detected

incorrectly (defect does not occur); FN be the number of defects that are not

detected (defect occurs).
Table 47 – Unambiguity Analysis of Dlibra System

Vague Subjective Optional Weak Multiple Implicit Quantifiable ID Scenario
TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN

1 1 1 1
2 1 1 3 1
3 1 1 3
4 1 1
5 3 2
6 1
7 1
8 1
9 1 1

10 1
11 1
12 1
13 1 2
14 1 1 1 1
15 1

Total 1 0 0 0 0 0 0 0 0 6 0 0 12 2 0 12 0 0 4 0 0

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

211

Table 48 shows the Completeness analysis (qualitative) in scenarios (Title,

Goal, Episodes, Exceptions) from Dlibra System. Consistency is not shown

because we do not have a baseline manually identified by Requirements

Engineers.
Table 48 - Completeness Analysis of Dlibra System

Atomicity Simplicity Uniformity Usefulness Conceptually
Soundness

Integrity Coherency Uniqueness ID
Scenario

TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN
1 2
2 1
3 1
4 5
5 5
6 3
7 3
8 3
9 2
10 1
11 1
12
13 3
14 5
15 1 1
Total 1 0 0 35 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

TITLE: Add a new client
GOAL: Add a new client
CONTEXT: user Add a new client
ACTOR: User, System
RESOURCE: database, clients
EPISODES:
1. User select option for adding new clients.
(Simplicity - TP: Missing Action-Verb in Present Tense)
2. User fills all required personal client data forms.
(Quantifiable - TP: ambiguous indicator)
3. System verifies correctness of data.
4. System adds a new client to the database and informs user about it.
(Multiplicity - TP: ambiguous indicator)
(Simplicity - TP: Contains more than one Action-Verb)
EXCEPTION:
3.1. IF Data is incomplete or incorrect THEN System informs user about problems.
3.2. IF Client with same personal data already exists THEN System informs user about that fact.
(Implicit - TP: ambiguous indicator)
4.1. IF Client can’t be added THEN System informs user about reason why client can’t be added.

TITLE: Add a new contract
GOAL: Add a new contract
CONTEXT: Add a new contract
ACTOR: User, System
RESOURCE: client, contract
EPISODES:
1. User select a client for whom new contract will be added.
(Simplicity - TP: Missing Action-Verb in Present Tense)
(Implicit - TP: ambiguous indicator)
(Weakness - TP: ambiguous indicator)
2. User chooses option for adding new contract.
3. System displays transaction form.
4. User fills all required data.
(Quantifiable - TP: ambiguous indicator)
5. System verifies information.
6. System saves contract and bounds it to the selected client.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

212

(Multiplicity - TP: ambiguous indicator)
(Implicit - TP: ambiguous indicator)
EXCEPTION:
5.1. IF Data is incomplete or incorrect THEN System informs user about problems.
6.1. IF contract can’t be saved THEN System informs user about that fact.
(Implicit - TP: ambiguous indicator)

TITLE: Add a new installation
GOAL: Add a new installation
CONTEXT: Add a new installation
ACTOR: User, System
RESOURCE: client, installation
EPISODES:
1. User select a client for whom new installation will be added.
(Simplicity - TP: Missing Action-Verb in Present Tense)
(Implicit - TP: ambiguous indicator)

(Weakness - TP: ambiguous indicator)
2. User chooses option for adding new installation.
3. System displays installation form.
4. User fills required data.
5. System verifies information.
6. System saves installation and bounds it to the selected client.
(Multiplicity - TP: ambiguous indicator)
(Implicit - TP: ambiguous indicator)
EXCEPTION:
5.1. IF Data is incomplete or incorrect THEN System informs user about problems.
6.1. IF Installation can’t be saved THEN System informs user about that fact.
(Implicit - TP: ambiguous indicator)

TITLE: Browse clients
GOAL: Browse clients
CONTEXT: Browse clients
ACTOR: user, System
RESOURCE: clients, scenario
EPISODES:
1. User select option for browsing clients.
(Simplicity - TP: Missing Action-Verb in Present Tense)
2. System displays the list of clients.
3. User may filter clients with specified criteria.
(Simplicity - TP: Missing Action-Verb in Present Tense) (Weakness: ambiguous indicator)
4. User may sort clients.
(Simplicity - TP: Missing Action-Verb in Present Tense)
(Weakness - TP: ambiguous indicator)
5. User may view details about selected client.
(Simplicity - TP: Missing Action-Verb in Present Tense)
(Weakness - TP: ambiguous indicator)
6. Scenario ends when user logs out or selects different option.
(Multiplicity - TP: ambiguous indicator)
(Simplicity - TP: Contains more than one Action-Verb)
EXCEPTION:
2.1. IF There are no clients to display THEN System displays blank list.

TITLE: Browse information
GOAL: Browse information
CONTEXT: Browse information
ACTOR: User, System
RESOURCE: licences, keys, contracts, installations, scenario
EPISODES:
1. User select option for browsing data.
(Simplicity - TP: Missing Action-Verb in Present Tense)

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

213

2. System displays the list of licences, keys, contracts and installations (grouping by type).
 (Multiplicity - TP: ambiguous indicator)
3. User may filter data with specified criteria.
(Simplicity - TP: Missing Action-Verb in Present Tense)
(Weakness - TP: ambiguous indicator)
4. User may sort data.
(Simplicity - TP: Missing Action-Verb in Present Tense)
(Weakness - TP: ambiguous indicator)
5. User may view details about selected element.
(Simplicity - TP: Missing Action-Verb in Present Tense)
(Weakness - TP: ambiguous indicator)
6. Scenario ends when users logs out or select different option.
(Multiplicity - TP: ambiguous indicator)
(Simplicity - TP: Contains more than one Action-Verb)
EXCEPTION:
2.1. IF There are no data to display THEN System displays blank list.

TITLE: Delete client
GOAL: Delete client
CONTEXT: Delete client
ACTOR: User , System
RESOURCE: client, clients, database
EPISODES:
1. User select option for deleting clients.
(Simplicity - TP: Missing Action-Verb in Present Tense)
2. User delete chosen client.
(Simplicity - TP: Missing Action-Verb in Present Tense)
3. System verifies possibility to perform deleting.
4. System saves changes to the database and informs user about it.
(Multiplicity - TP: ambiguous indicator)
(Simplicity - TP: Contains more than one Action-Verb)
EXCEPTION:
3.1. IF Client can not be deleted THEN System informs user about the conditions.

TITLE: Delete contract
GOAL: Delete contract
CONTEXT: Delete contract
ACTOR: User, System
RESOURCE: contract, database
EPISODES:
1. User select option for deleting contract.
(Simplicity - TP: Missing Action-Verb in Present Tense)
2. User delete chosen contract.
(Simplicity - TP: Missing Action-Verb in Present Tense)
3. System verifies possibility to perform deleting.
4. System saves changes to the database and informs user about it.
(Multiplicity - TP: ambiguous indicator)

(Simplicity - TP: Contains more than one Action-Verb)
EXCEPTION:
3.1. IF Contract can not be deleted THEN System informs user about problems.

TITLE: Delete installation
GOAL: Delete installation
CONTEXT: Delete installation
ACTOR: User, System
RESOURCE: installation, database
EPISODES:
1. User select option for deleting installation.
(Simplicity - TP: Missing Action-Verb in Present Tense)
2. User delete chosen installation.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

214

(Simplicity - TP: Missing Action-Verb in Present Tense)
3. System verifies possibility to perform deleting.
4. System saves changes to the database and informs user about it.
(Multiplicity - TP: ambiguous indicator)

(Simplicity - TP: Contains more than one Action-Verb)
EXCEPTION:
3.1. IF Installation can not be deleted THEN System informs user about problems.

TITLE: Edit client data
GOAL: Edit client data
CONTEXT: Edit client data
ACTOR: user, System
RESOURCE: clients, database
EPISODES:
1. User select option for editing clients.
(Simplicity - TP: Missing Action-Verb in Present Tense)
2. User modifies personal client data.
3. System verifies correctness of data.
4. System saves a new client data to the database and informs user about it.
(Multiplicity - TP: ambiguous indicator)
(Simplicity - TP: Contains more than one Action-Verb)
EXCEPTION:
3.1. IF Data is incomplete or incorrect THEN System informs user about problems.
3.2. IF Client with same personal data already exists THEN System informs user about that fact.
(Implicit - TP: ambiguous indicator)
4.1. IF Client data changes can’t be saved THEN System informs user about reason why client
can’t be modified.

TITLE: Edit contract
GOAL: Edit contract
CONTEXT: Edit contract
ACTOR: User, System
RESOURCE: client, contract
EPISODES:
1. User select a client.
(Simplicity - TP: Missing Action-Verb in Present Tense)
2. User chooses option for editing an existing contract.
3. System displays transaction form.
4. User changes desired data.
5. System verifies information.
6. System saves changed contract.
EXCEPTION:
5.1. IF Data is incomplete or incorrect THEN System informs user about problems.
6.1. IF contract can’t be saved THEN System informs user about that fact.
(Implicit - TP: ambiguous indicator)

TITLE: Edit installation
GOAL: Edit installation
CONTEXT: Edit installation
ACTOR: User, System
RESOURCE: client, installation
EPISODES:
1. User select a client.
(Simplicity - TP: Missing Action-Verb in Present Tense)
2. User chooses option for editing an existing installation.
3. System displays installation form.
4. User changes desired data.
5. System verifies information.
6. System saves changed installation.
EXCEPTION:

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

215

5.1. IF Data is incomplete or incorrect THEN System informs user about problems.
6.1. IF Installation can’t be saved THEN System informs user about that fact.
(Implicit - TP: ambiguous indicator)

TITLE: Log in to the system
GOAL: Log in to the system
CONTEXT: User Log in to the system
ACTOR: User, System
RESOURCE: main page, login option
EPISODES:
1. User selects login option.
2. User provides all required data.
(Quantifiable - TP: ambiguous indicator)
3. System verifies correctness of data.
4. System displays a main page.
EXCEPTION:
3.1. IF Data is incomplete or incorrect THEN System asks for data again.

TITLE: Prepare a report
GOAL: Prepare a report
CONTEXT: Prepare a report
ACTOR: User, System
RESOURCE: report, database, file
EPISODES:
1. User select option for creating reports.
(Simplicity - TP: Missing Action-Verb in Present Tense)
2. System displays a list of possible fields in the report.
3. User selects fields to be included in the report and rules to filter values from database.
(Multiplicity - TP: ambiguous indicator)
(Simplicity - TP: Contains more than one Action-Verb)
4. User order report generation.
(Simplicity - TP: Missing Action-Verb in Present Tense)
5. System asks for type and localisation of the output file with report.
(Multiplicity - FP: ambiguous indicator)
6. User selects the type and localisation of the output file with report.
(Multiplicity - FP: ambiguous indicator)
7. System generates a report.
EXCEPTION:
7.1. IF Report can’t be saved in given location THEN System displays information.

TITLE: Request for licence
GOAL: Request for licence
CONTEXT: Request for licence
ACTOR: User, System, PCSS Team Participant
RESOURCE: dLibra server, licence, contracts, file
EPISODES:
1. User select option for requesting a new licence.
(Simplicity - TP: Missing Action-Verb in Present Tense)
2. System displays the list of user’s contracts.
3. User selects one contract for licence request.
4. System contact with dLibra server to obtain all necessary data.
(Simplicity - TP: Missing Action-Verb in Present Tense)
(Quantifiable - TP: ambiguous indicator)
(Vagueness - TP: ambiguous indicator)
5. System validate given data.
(Simplicity - TP: Missing Action-Verb in Present Tense)
6. System store a request new licence and informs user about it.
(Multiplicity - TP: ambiguous indicator)
(Simplicity - TP: Contains more than one Action-Verb)
7. PCSS Team Participant approve request for a new licence.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

216

(Simplicity - TP: Missing Action-Verb in Present Tense)
8. User downloads the licence file.
EXCEPTION:
2.1. IF There are no contracts THEN System displays blank list.
3.1. IF selected contract can not have more licenses THEN System informs user about that fact.
(Implicit - TP: ambiguous indicator)
5.1. IF Data is not valid THEN System informs user about incorrect data.

TITLE: Search
(Atomicity - TP: Missing Object)
(Soundness -FP: Title does not describe the Goal)
GOAL: Search
CONTEXT: Search
ACTOR: User, System
RESOURCE: filter, criteria, database, results
EPISODES:
1. User select option for searching.
(Simplicity - TP: Missing Action-Verb in Present Tense)
2. User selects subject of search (clients, contracts, installations).
3. System displays list of possible criteria.
4. User creates filter for searching.
(Simplicity - TP: Missing Object)
5. System search the database and displays the results.
(Multiplicity - TP: ambiguous indicator)
(Simplicity - TP: Contains more than one Action-Verb)
EXCEPTION:
4.1. IF Chosen criteria are invalid THEN System warns user.
5.1. IF No records found THEN System displays blank list.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

217

A1.4
Mobile News

Table 49 shows the quantitative analysis in scenarios (Pre-conditions, Post-

conditions, Episodes, Exceptions) from Mobile News System, and how they are

mapped in Petri-Net elements (Input places, Output places, Transitions).
Table 49 - Quantitative Analysis of Mobile News System

ID
Scenario

Scenario Num. Pre-
conditions/Conditions/
Causes/Constraints

Num.
Post-
conditions

Num.
Episodes

Num.
Exceptions

Num.
Input
Places -
Petri-Net

Num.
Transitions
- Petri-Net

Num.
Output
Places
- Petri-
Net

Num.
Dummy
Places -
Petri-
Net

1 Add a new channel 0 0 12 1 0 13 0 15
2 Add a new channel

group
0 0 7 0 0 7 0 9

3 Configure the server 0 0 4 1 0 5 0 7
4 Configure user

preferences
0 0 4 0 0 4 0 6

5 Delete a channel 0 0 10 0 0 10 0 12
6 Delete a channel

group
0 0 7 0 0 7 0 9

7 Delete a user group 0 0 7 1 0 8 0 10
8 Delete news 0 0 2 0 0 2 0 4
9 Download news 0 0 6 0 0 6 0 8

10 Post a group message 0 0 4 0 0 4 0 6
11 Read news 0 0 6 0 0 6 0 8
12 Register a new user 1 0 5 2 1 7 0 9
13 Run the application 0 0 3 0 0 3 0 5
14 Subscribe/unsubscribe

news channels
0 0 7 0 0 7 0 9

15 Update news 0 0 5 0 0 5 0 7
Total 1 0 89 5 1 94 0 124

Table 50 shows the Unambiguity analysis (qualitative) in scenarios (Title,

Goal, Episodes, Exceptions) from Mobile News System. Let TP be the number of

defects detected correctly by out analysis approach; FP be the number of defects

detected incorrectly (defect does not occur); FN be the number of defects that are

not detected (defect occurs).
Table 50 – Unambiguity Analysis of Mobile News System

Vague Subjective Optional Weak Multiple Implicit Quantifiable Scenario
TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN

1 1 5 1 1
2 4
3 1
4 1 1
5 3 2 2
6 2 1 1
7 1 1
8 1 1 1
9 2 1 2
10 1
11 1 1 1
12 1 4
13
14 2 4 2
15 1 1
Total 6 0 0 0 0 0 0 0 0 0 0 0 27 1 0 13 0 0 8 0 0

Table 51 shows the Completeness analysis (qualitative) in scenarios (Title,

Goal, Episodes, Exceptions) from Mobile News System. Consistency is not

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

218

shown because we do not have a baseline manually identified by Requirements

Engineers.
Table 51 - Completeness Analysis of Mobile News System

Atomicity Simplicity Uniformity Usefulness Conceptually
Soundness

Integrity Coherency Uniqueness ID Scenario

TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN
1 4 1 1
2 2
3 1 1
4 2
5 2 1
6 1
7 1 1
8 1
9 1
10 1
11 1
12 5 1
13 1
14 5 1
15 1
Total 0 0 0 26 1 2 3 1 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TITLE: Add a new channel
GOAL: Add a new channel
CONTEXT: Add a new channel
ACTOR: Administrator, System
RESOURCE: channel, service, channel group, database
EPISODES:
(Usefulness - TP: Too long scenario - Num. episodes > 10)
1. Administrator logs on to the administration panel.
2. System displays administration options.
3. Administrator selects the Group and channel management option.
(Multiplicity - TP: ambiguous indicator)
4. System displays a list of defined channel groups and an add/delete group menu.
(Multiplicity - TP: ambiguous indicator)
5. Administrator chooses a group to which he wants to add a new channel.
(Simplicity - TP: Contains more than one Action-Verb)
(Implicit - TP: ambiguous indicator)
6. System displays a list of channels in the selected group and an add/delete menu.
(Multiplicity - TP: ambiguous indicator)
7. Administrator types the name of the channel and the URL of the news service and selects Add
channel.
(Simplicity - TP: Contains more than one Action-Verb)
(Multiplicity - TP: ambiguous indicator)
8. System checks if a channel with the given name or URL has not been already defined and if so,
inserts the channel information into a database.
(Multiplicity - TP: ambiguous indicator)
9. System adds an information about the new channel to a group message.
10. See step 6.
(Simplicity - TP: Missing Subject)
11. Administrator selects the Finish option.
12. System posts a group message containing information about all new channels in the selected
channel group.
(Quantifiable - TP: ambiguous indicator)
EXCEPTION:
5.1. Administrator adds more channels. Proceed to step 7.
(Simplicity - TP: Contains more than one Sentence)
(Uniformity - TP: Incomplete cause)
(Vagueness - TP: ambiguous indicator)

TITLE: Add a new channel group
GOAL: Add a new channel group
CONTEXT: Add a new channel group

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

219

ACTOR: Administrator, System
RESOURCE: Group, channel, database
EPISODES:
1. Administrator logs on to the administration panel.
2. System displays administration options.
3. Administrator selects the Group and channel management option.
(Multiplicity - TP: ambiguous indicator)
4. System displays a list of defined channel groups and an add/delete group menu.
(Multiplicity - TP: ambiguous indicator)
5. Administrator types the name of a new group and selects Add group.
(Simplicity - TP: Contains more than one Action-Verb)
(Multiplicity - TP: ambiguous indicator)
6. System checks if a group with the given name has not been already defined and if so, inserts the
name of a new group into a database.
(Multiplicity - TP: ambiguous indicator)
7. See step 4.
(Simplicity - TP: Missing Subject)

TITLE: Configure the server
GOAL: Configure the server
CONTEXT: Configure the server
ACTOR: Administrator
RESOURCE: configuration settings
EPISODES:
1. Administrator logs on to the administration panel.
2. Administrator selects the Configure option.
3. Administrator chooses and changes the desired settings.
(Multiplicity - TP: ambiguous indicator)
(Simplicity - TP: Contains more than one Action-Verb)
4. Administrator saves configuration settings.
EXCEPTION:
4.1. Administrator cancels configuration changes.
 (Uniformity - TP: Incomplete cause)

TITLE: Configure user preferences
GOAL: Configure user preferences
CONTEXT: Configure user preferences
ACTOR: User, System
RESOURCE: Preferences, options
EPISODES:
1. User chooses the Preferences option.
2. System displays a list of available options (i.e. font and color settings, local news caching, etc..).
(Vagueness - TP: ambiguous indicator)
3. User configures the option according to his/her preferences and confirm the changes.
(Multiplicity - TP: ambiguous indicator)
(Simplicity - TP: Contains more than one Action-Verb)
4. System saves user preferences configuration and displays main application view.
(Multiplicity - TP: ambiguous indicator)
(Simplicity - TP: Contains more than one Action-Verb)

TITLE: Delete a channel
GOAL: Delete a channel
CONTEXT: Delete a channel
ACTOR: Administrator, System
RESOURCE: channel, channels, group, database
EPISODES:
(Usefulness - TP: Too long scenario - Num. episodes > 10)
1. Administrator logs on to the administration panel.
2. System displays administration options.
3. Administrator selects the Group and channel management option.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

220

(Multiplicity - TP: ambiguous indicator)
4. System displays a list of defined channel groups and an add/delete group menu.
(Multiplicity - TP: ambiguous indicator)
5. Administrator chooses a group containing the channel he wants to delete.
(Implicit - TP: ambiguous indicator)
(Simplicity - TP: Contains more than one Action-Verb)
6. System displays a list of channels in the selected group and an add/delete menu.
(Multiplicity - TP: ambiguous indicator)
7. Administrator selects the channel(s) he wants to delete and chooses the Delete option.
 (Implicit - TP: ambiguous indicator)
(Simplicity - TP: Contains more than one Action-Verb)
8. System deletes the selected channels from the database.
9. System posts a group message containing information about the deleted channels in the selected
channel group to all users involved (subscribing the deleted channels).
(Quantifiable - TP: ambiguous indicator)
10. System deletes all subscription information concerning the deleted channels.
(Quantifiable - TP: ambiguous indicator)

TITLE: Delete a channel group
GOAL: Delete a channel group
CONTEXT: Delete a channel group
ACTOR: Administrator, System
RESOURCE: channel group
EPISODES:
1. Administrator logs on to the administration panel.
2. System displays administration options.
3. Administrator selects the Group and channel management option.
(Multiplicity - TP: ambiguous indicator)
4. System displays a list of defined channel groups and an add/delete group menu.
(Multiplicity - TP: ambiguous indicator)
5. Administrator selects the group(s) he wants to delete and chooses the Delete option.
 (Simplicity - TP: Contains more than one Action-Verb)
6. System asks for confirmation.
 (Implicit - TP: ambiguous indicator)
7. System deletes all channels from the selected groups (see: UC5, steps 8 to 10).
(Quantifiable - TP: ambiguous indicator)

TITLE: Delete a user group
GOAL: Delete a user group
CONTEXT: Delete a user group
ACTOR: Administrator, System
RESOURCE: users, accounts
EPISODES:
1. Administrator logs on to the administration panel.
2. System displays administration options.
3. Administrator selects the Delete users option.
4. System displays the users deletion menu.
5. Administrator selects deletion options (i.e. date of users` last login).
6. Administrator confirms deletion request.
7. System finds all users matching deletion criteria and deletes found user accounts.
(Simplicity - FN: Contains more than one Action-Verb)
(Quantifiable - TP: ambiguous indicator)
(Multiplicity - TP: ambiguous indicator)
EXCEPTION:
6.1. Administrator cancels user deletion.
(Uniformity - TP: Incomplete cause)

TITLE: Delete news
GOAL: Delete news
CONTEXT: Delete news

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

221

ACTOR: System
RESOURCE: messages, database
EPISODES:
(Usefulness - TP: Too short scenario - Num. episodes < 3)
1. System queries the database for news messages, whose expiry date and time have passed.
(Implicit - TP: ambiguous indicator)
(Multiplicity - TP: ambiguous indicator)
2. System deletes all returned messages from the database.
(Quantifiable - TP: ambiguous indicator)

TITLE: Download news
GOAL: Download news
CONTEXT: Download news
ACTOR: User, system
RESOURCE: news, server, messages, channels, database
EPISODES:
1. User chooses to update locally stored news.
2. System sends a HTTP request to the Mobile News server.
3. Server sends all pending group messages.
(Quantifiable - TP: ambiguous indicator)
4. Server sends separate news messages from all subscribed channels.
(Quantifiable - TP: ambiguous indicator)
5. System receives news messages and stores them in a local database.
(Multiplicity - TP: ambiguous indicator)
(Implicit - TP: ambiguous indicator)
(Simplicity - TP: Contains more than one Action-Verb)
6. System displays a list of groups with subscribed channels and the number of new messages in
each of them.
(Multiplicity - TP: ambiguous indicator)

TITLE: Post a group message
GOAL: Post a group message
CONTEXT: Post a group message
ACTOR: Administrator, User
RESOURCE: message, data
EPISODES:
1. Administrator logs on to the administration panel.
2. Administrator selects the Post group message option.
3. Administrator types the message and posts it.
(Multiplicity - TP: ambiguous indicator)
(Simplicity - TP: Contains more than one Action-Verb)
4. User receives the message when downloading new data.

TITLE: Read news
GOAL: Read news
CONTEXT: Read news
ACTOR: User, System
RESOURCE: messages, preferences, hyperlink
EPISODES:
1. User chooses a news group from the Today menu.
2. System displays a list of topics of available messages in chosen group.
(Vagueness - TP: ambiguous indicator)
3. User chooses a topic.
4. System displays the message using user’s appearance preferences.
5. User reads the message and closes it or uses a hyperlink to go to the full message.
(Multiplicity - TP: ambiguous indicator)
(Simplicity - TP: Contains more than one Action-Verb)
(Implicit - TP: ambiguous indicator)
6. System marks the message as Read.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

222

TITLE: Register a new user
GOAL: Register a new user
CONTEXT: Register a new user
ACTOR: User, System
RESOURCE: server, user account, ID , preferences
EPISODES:
1. System asks the user if he/she wants to register.
(Implicit - TP: ambiguous indicator)
(Simplicity - TP: Contains more than one Action-Verb)
2. User confirms he/she wants to register.
(Implicit - TP: ambiguous indicator)
(Simplicity - TP: Contains more than one Action-Verb)
3. System sends a registration request to the server.
4. Server creates a new user account and sends back a user ID.
(Multiplicity - TP: ambiguous indicator)
(Simplicity - TP: Contains more than one Action-Verb)
5. System stores the user ID and instructs the user how to subscribe news channels or configure
his/her preferences.
(Implicit - TP: ambiguous indicator)
(Simplicity - TP: Contains more than one Action-Verb)
EXCEPTION:
2.1. IF User refuses to register THEN System displays an information that it cannot be used
without prior registration.
 (Implicit - TP: ambiguous indicator)
2.1.2 User confirms the message.
(Simplicity - TP: Nested Exception Solution must be treated by a scenario)
(Uniformity - FP: Incomplete cause)

TITLE: Run the application
GOAL: Run the application
CONTEXT: Run the application
ACTOR: User, System
RESOURCE: application, channels
EPISODES:
1. User starts the application.
2. System checks for registration information.
3. IF the user is already registered THEN the system automatically updates news messages from
subscribed channels (refer to Download news use case). If no, the system attempts to Register a
new user (refer to Register a new user use case).
 (Simplicity - TP: Contains more than one Action-Verb)

TITLE: Subscribe/unsubscribe news channels
GOAL: Subscribe/unsubscribe news channels
CONTEXT: Subscribe/unsubscribe news channels
ACTOR: User, System
RESOURCE: server, channels, database
EPISODES:
1. User chooses the Channel subscription option.
2. System requests for and downloads a list of available groups and channels.
(Multiplicity - TP: ambiguous indicator)
(Vagueness- TP: ambiguous indicator)
(Simplicity - TP: Contains more than one Action-Verb)
3. System displays a tree view of available groups and channels and marks those already
subscribed by the user.
(Multiplicity - TP: ambiguous indicator)
(Vagueness- TP: ambiguous indicator)
(Simplicity - TP: Contains more than one Action-Verb)
4. User selects the channels he/she wants to subscribe and/or deselects already subscribed channels
to unsubscribe them and chooses the Change subscription options.
(Implicit - TP: ambiguous indicator)

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

223

(Simplicity - TP: Contains more than one Action-Verb)
5. System sends the subscription configuration to the Mobile News server and waits for
confirmation.
(Multiplicity - TP: ambiguous indicator)
(Simplicity - TP: Contains more than one Action-Verb)
6. Server alters the user’s subscription configuration in a database and sends a change
confirmation.
(Multiplicity - TP: ambiguous indicator)
(Simplicity - TP: Contains more than one Action-Verb)
7. System receives the confirmation and displays it.
(Implicit - TP: ambiguous indicator)
(Simplicity - FN: Contains more than one Action-Verb)

TITLE: Update news
GOAL: Update news
CONTEXT: Update news
ACTOR: Daemon, System
RESOURCE: service, file, message, database
EPISODES:
1. Daemon sends a HTTP request to a defined news service.
2. System receives a RSS-like formatted news file.
3. System parses the received news file.
4. System assigns an expiry date and time to each incoming message.
(Simplicity - FP: Contains more than one Action-Verb)
(Multiplicity - FP: ambiguous indicator)
5. System inserts appropriate parts of the news file into a news database.
(Vagueness - TP: ambiguous indicator)

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

224

Appendix A2
Quality Models of Related Work

A.2.1.
Static Analysis of Software Requirements Specification

A.2.1.1.
Static Analysis of Requirement Statements

Table 52 - Quality Indicators of ARM (Wilson et al., 1997)
Property Description Indicators
Imperatives The sentence contains words or phrases that command

that something must be provided.
shall, must, must not, is required
to, are applicable.

Continuances The sentence contains phrases that follow an
imperative and introduce the SRS at a lower level.

below: , as follows: , following: ,
listed::

Directives The sentence contains words or phrases that point to
illustrative information within the SRS.

figure, table, for example, note:

Options The sentence contains words that give the developer
latitude in satisfying the specification statements that
contain them.

can , may, optionally

Weak Phrases The sentence contains clauses that are apt to cause
uncertainty and leave room for multiple
interpretations.

adequate, as a minimum, as
applicable, easy, as appropriate

Readability It measures the difficulty in reading the Document or a
sentence.
This metric is the Coleman-Liau Formula readability
metric: (5.89* letters/words-
0.3*sentences/(100*words)-15.8])

If it is > 55.8 the document is
difficult -to-read.

Table 53 - Expressiveness Quality Model of QuARS (Gnesi et al., 2005)
Property Description Indicators
Vagueness The sentence contains words or phrases having a non

uniquely quantifiable meaning.
clear, easy, strong, good, bad, efficient,
useful, significant

Subjectivity The sentence contains words or phrases expressing
personal opinions or feeling.

similar, better, similarly, worse,
having in mind, take into account

Optionality The sentence contains words or phrases expressing an
optional part (i.e. a part that can or cannot be considered).

possibly, eventually, if case, if
possible, if appropriate, if needed

Implicitly The sentence does not specify the subject or object by
means of its specific name but uses pronoun or other
indirect reference.

this, these, that, those, it, they,
previous, next, following, below

Weakness The sentence contains a weak verb. A verb that makes the
sentence not imperative is considered weak.

can, could, may, …

Under-
specification

The sentence contains a word identifying a class of objects
without a modifier specifying an instance of this class

flow instead of data flow, control flow,
.. , testing instead of functional
testing, unit testing

Multiplicity The sentence has more than one main verb, subject or
object

and, or, and/or, …

Readability It measures the difficulty in reading the Document or a
sentence.
This metric is the Coleman-Liau Formula readability
metric: (5.89* letters/words-0.3*sentences/(100*words)-
15.8])

If it is >15 the document is difficult -
to-read.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

225

Table 54 - Ambiguity Indicators of SRRE (Tjong, 2008)
Property Description Indicators
Continuance The sentence introduces further

specification
as follows, below, following, in addition, in particular

Coordinator The sentence introduces a
coordination ambiguity

and, and/or, or

Directive The sentence introduces extra
information

e.g., etc., figure, for example, i.e., note, table

Incomplete The sentence introduces
information that are not in SRS

as a minimum, as defined, as specified, in addition, is defined,
no practical limit

Optional The sentence expresses an optional
part

as desired, at last, either, eventually, if appropriate

Pronoun The sentence uses pronouns or
indirect reference

anyone, anybody, anything i, it, its, itself, me, mine, most, my,
myself, nobody, none, no one, nothing, our, ours, ourselves,
she, someone, somebody, yourselves

Plural The sentence contains plural words The Plural corpus contains a list of 11,287 plural nouns, each
ending in s

Quantifier The sentence introduces terms
used for quantification

all, any, few, little, many, much, several, some

Vague The sentence introduces terms that
contribute vagueness

/,< >, (), [], { }, ;, ?, !, adaptability, additionally, adequate,
aggregate, also, ancillary, arbitrary, appropriate, as
appropriate varying

Weak The sentence contains a weak verb can, could, may, might, ought to, preferred, should, will,
would

Table 55 - Requirements language criteria (IEEE, 2011; Femmer et al., 2014)
Smell Description Indicators
Ambiguous Adverbs and
Adjectives

Refer to adverbs and adjectives that are
unspecific

almost always, significant, minimal

Vague Pronouns Are unclear relations of a pronoun Using Part-of-speech Tagging
Subjective Language Refer to words of which the semantics is not

objective
User friendly, easy to use, cost
effective

Comparative Phrases Are used in requirements that express a
relation of the system to specific other systems

Using Morphological Analysis

Superlatives Are used in requirements that express a
relation of the system to all other systems

Using Morphological Analysis and
Part-of-speech Tagging

Negative Statements Are “statements of system capability not to be
provided”

must not

Open-ended, Non-verifiable
Terms

Are hard to verify as they offer a choice of
possibilities

Provide support, but not limited to, as
a minimum

Loopholes Enable stakeholders to ignore certain parts of
the application

Is possible, as appropriate, as
applicable

Incomplete References Are references that a reader cannot follow Not implemented
Table 56 - Potentially problematic constructs (from Berry et al., 2012)

Smell Description Indicators
Warn_AND The “and” conjunction can imply several meanings, and
Warn_OR The “or” conjunction can imply “exclusive or”, or “inclusive

or”.
or

Warn_Quantifier Terms used for quantification all, any, every
Warn_Pronoun Pronouns can lead to referential ambiguity. they
Warn_VagueTerms There are several vague terms that are commonly used in

requirements documents.
user-friendly, support,
acceptable, up to,
periodically

Warn_PassiveVoice Passive voice blurs the actor of the requirement and must be
avoided in requirements.

it

Warn_Complex_Sente
nce

Using multiple conjunctions in the same requirements
sentence make the sentence hard to read and are likely to
cause ambiguity.

and, or

Warn_Plural_Noun Plural Nouns can potentially lead to ambiguous situations
Warn_Adverb_in_Ver
b_Phrase

Adverbial verb phrases are discouraged due to vagueness and
the chances of important details remaining tacit in the adverb

periodically

Warn_Adj_followed_b
y_Conjunction

The adjective followed by two nouns separated by a
conjunction, can lead to ambiguity due to the possible
relation of adjective with just first noun or both nouns.

compliant

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

226

Table 57 - Quality User Story Framework (Lucassen et al., 2015)
Quality Criteria Description

Atomic A user story expresses a requirement for exactly one feature
Minimal A user story contains nothing more than role, means and

ends

Syntactic: quality, concerning
the textual structure of a user
story without considering its
meaning. Well-formed A user story includes at least a role and a means

Conflict-free A user story should not be inconsistent with any other user
story

Conceptually
sound

The means expresses a feature and the ends expresses a
rationale, not something else

Problem-
oriented

A user story only specifies the problem, not the solution to it

Semantic: quality, concerning
the relations and meaning of
(parts of) the user story text.

Unambiguous A user story avoids terms or abstractions that may lead to
multiple interpretations

Complete Implementing a set of user stories creates a feature-complete
application, no steps are missing

Explicit
dependencies

Link all unavoidable, non-obvious dependencies on user
stories

Full sentence A user story is a well-formed full sentence
Independent The user story is self-contained, avoiding inherent

dependencies on other user stories
Scalable User stories do not denote too coarse-grained requirements

that are difficult to plan and prioritize
Uniform All user stories follow roughly the same template

Pragmatic: quality, regarding
choosing the most effective
alternatives for communicating
a given set of requirements.

Unique Every user story is unique, duplicates are avoided
A.2.1.2.
Static Analysis of Scenarios

Table 58 - Taxonomy of defects in use case models (Anda and Sjoberg, 2002)
Checklist Element Description

Actor Human users or external entities that will interact with the system are not identified.
Incorrect description of actors or wrong connection between actor and use case.
Description of actor is inconsistent with its behavior in use cases.
Too broadly defined actors or ambiguous description of actor.
Actors that do not derive value from/provide value to the system.

Use case
diagram: check
the
completeness
and consistency
in use case
diagrams

Use case Required functionality is not described in use cases. Actors have goals that do not
have corresponding use cases.
Incorrect description of a use case
Description is inconsistent with reaching the goal of the use case.
Name of use case does not reflect the goal of the use case.
Use cases with functionality outside the scope of the system or use cases that
duplicate functionality.

Flow of events Input or output for use cases is not described. Events that are necessary for
understanding the use cases are missing.
Incorrect description of one or several events.
Events that are inconsistent with reaching the goal of the use case they are part of.
Ambiguous description of events, perhaps because of too little detail.
Superfluous steps or too much detail in steps.

Variations Variations that may occur when attempting to achieve the goal of a use case are not
specified.
Incorrect description of a variation.
Variations that are inconsistent with the goal of the use case.
Ambiguous description of what leads to a particular variation.
Variations that are outside the scope of the system.

Relation
between use
cases

Common functionality is not separated out in included use cases.
Inconsistencies between diagram and descriptions, inconsistent terminology,
inconsistencies between use cases, or different level of granularity.

Use case
description:
check the
completeness
and consistency
in use cases and
their
relationships

Trigger, pre-
condition and
post-condition

Trigger, pre- or post-conditions have been omitted.
Incorrect assumptions or results have led to incorrect pre- or post- conditions.
Pre- or post- conditions are inconsistent with goal or flow of events.
Ambiguous description of trigger, pre- or post-condition
Superfluous trigger, pre-or post-conditions.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

227

Table 59 - Scenario Checklist (Leite et al., 2000; Leite et al., 2005)
Checklist Element Description

Syntactic
verification

Check the existence of more than one episode per
scenario;
Check the syntax of each scenario element as
established in the scenario model;

Relationship among
components

Check that every Actor participates in at least one
episode;
Check that every Actor mentioned in episodes is
included in the Actor element;
Check that every Resource is used in at least one
episode;
Check that every Resource mentioned in episodes is
included in the Resource element;

Intra-scenario: verify
each component in
every scenario to
confirm its consistency
with the components
and adherence to the
scenario model

Semantic
verification

Check the coherence between the Title and the Goal;
Ensure that the set of Episodes satisfies the Goal and is
within the Context;
Ensure that actions presents in the Pre-conditions are
already performed;
Ensure that Episodes contain only actions to be
performed;

Scenario
relationship

Check that every Episode identified as sub-scenario
exists within the set of scenarios;
Check that the set of Episodes of every sub-scenario is
not already included in another scenario;
Check that every Exception is treated by a scenario;
Check that every Pre-condition is either an
uncontrollable fact or is satisfied by another scenario;
Check coherence between related scenario Pre-
conditions and scenario Pre-conditions;
Check that geographical and Temporal location of
related scenarios are equal or more restricted than
those of scenario;

Inter-scenario: check the
relationship among
different scenarios
looking for overlaps or
gaps

Scenario overlap Check that Goal coincidence only takes place in
different situations;
Check that Episode coincidence only takes place in
different situations;
Check that Context coincidence only takes place in
different situations;

LEL Coverage: ensure
that LEL symbols are
properly used and that
every phrase
emphasized as a LEL
symbol is actually part
of LEL.

Check that every lexicon symbol is identified;
Check the correct use of lexicon symbols;
Check that Actors are preferentially Subject symbols;
Check that Resources are preferentially Object symbols;
Check that the behavioral response of Subject symbols are covered by
scenarios;

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

228

Table 60 - The 7Cs Verification Heuristics (Phalp et al., 2007)
Property Description

Scope The use case should contain all that is required to answer
the problem.

Coverage

Span The use case should only contain detail relevant to the
problem statement. Extra unnecessary information
provided is out of problem scope and not required.

Text Order The use case should follow a logical path with events in the
description in the correct order.

Dependencies The use case should complete as an end-to-end transaction
(which can include alternative/exceptional flows). Does the
actor reach a state that stops the transaction from
terminating as expected?

Cogent

Rational Answer The logic of the use case description should provide a
plausible answer to the problem.

Coherent The sentence being written should repeat a noun in the last sentence or a previous
sentence, if possible. The description is easier to read and quicker to understand if
there is logical coherence throughout.

Consistent
Abstraction

The use case should be at a consistent level of abstraction through- out. Mixing
abstraction levels (problem domain, interface specification, internal design mixes)
may cause difficulty in understanding.
Variations Alternative paths should be excluded from the main flow.

Inclusion of alternative paths in the main flow reduces
readability.

Consistent
Structure

Sequence Numbering of events in the main flow should be consistent.
Consistent
Grammar

Simple present tense should be used throughout. Adverbs, adjectives, pronouns,
synonyms and negatives should be avoided.
Separation There should be a separate section for any

alternative/exceptional paths to the main flow.
Viable Alternatives should be viable and make sense.

Consideration of
Alternatives

Numbering Alternative numberings should exactly match the numbers
in the main flow.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

229

Table 61 - The Use Case Defects (Ciemniewska and Jurkiewicz, 2007)
Level Defect Description
Specification-Level
Bad Smells

Use-Case
Duplication

At the level of requirements specification, where there are
many use cases, a quite common defect which we have
observed is Use-Case Duplication.

Too long or too short
use cases

It is strongly recommended to keep use cases 3-9 steps
long. Too long use cases are difficult to read and
understand. Too short use cases, consisting of one or two
steps, distract a reader from the context and, as well,
make the specification more difficult to understand.

Complicated
extension

When the interruption causes the execution of a
repeatable, consistent sequence of steps, then this
sequence should be extracted to a separate use case

Repeated actions in
neighbouring steps

Every step of a use case should represent one particular
action. The action may consist of one or more moves
which can be taken as an integrity. Every step should
contain significant information which rather reflect user
intent then a single move. Splitting these movements into
separate steps may lead to long use cases, bothersome to
read and hard to maintain.

Use-Case Level

Inappropriate naming

Every use case should have a descriptive name. The title
of each use case presents a goal that the primary actor
wants to achieve. There is a few conventions of naming
use cases, but it is preferable to use active verb phrase in
the use case name. Furthermore, chosen convention
should be used consistently in all us cases.

Too Complex
Sentence Structure

The structure of a sentence used for describing each step
of use case should be as simple as possible. It means that
it should generally consists of a subject, a verb, an object
and a prepositional phrase

Lack of the Actor The reader should know which step is performed by
which actor. Thus, every step in a use case should be an
action that is performed by one particular actor.

Misusing Tenses and
Verb Forms

Use cases should be written in a way which is highly
readable for everyone. Therefore the action ought to be
described from the user point of view. In order to ensure
this approach, the present simple tense and active form of
a verb should be used.

Using Technical
Jargon

Technical details should be kept outside of the functional
requirements specification.

Step Level

Conditional Steps Conditional sentences (if condition then action) is
preferred by computer scientists, but it can confuse the
customer. Especially it can be difficult to read when
nested if statement is used in a use case step. Use cases
should be as readable as possible. Such a style of writing
makes it complex, hard to understand and follow.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

230

Table 62 - Use Case Checklist of Text2Test (Sinha et al., 2010)
Condition of interest Description
Stylistic checks For English sentences e.g., voice use of actions of recognized kinds, use of

anaphora.
Complexity checks For the number of actions in a statement, the number of statements in a use case,

and so on.
Completeness checks Of use case statements e.g., missing actors and actions, missing parameters.
Structural checks For the model e.g., consistent use of aliases, dangling use case references.
Flow checks For data and control flow e.g., attempts to use items before they are created.
Concurrency-related checks e.g., for possibly concurrent actions or possibly non-serializable behaviors.
Inter-model checks To compare the actors and items referenced in a use case to an associated domain

model.
Table 63 - Common use case defects (Liu et al., 2014)

Defect Description
Inconsistent step numbering
defect

Inconsistent step numbering captures the situation where the sentence numbers of main
flow or alternative flow are not consistent. This may lead to incorrect step referencing.

Use case contains the
unclear alternative flow
starting step defect

In some use cases, the starting step (in main flows) of the alternative flow is not clearly
specified. This may lead to ambiguity when merging the alternative flows with the
main flow.

Conflict is a function
deciding whether two
predicates conflict

An overly-strong precondition is one such that inconsistencies between the
precondition and the guard conditions of an edge may occur.

The use case contains the
missing alternative flow
defect.

Missing of alternative flows is the case when the main flow defines some action under
some specific condition, however not all the other possible conditions are addressed.

Missing Scenarios By interacting with the users, the approach must be able to find missing scenarios
which are not captured by the use case documents.

Missing Pre/Post-conditions In most of the use cases, the authors of the use case specifications tend to focus on
documenting the action steps and ignore the pre-conditions and post-conditions.
Consequently the use cases usually have their preconditions and post-conditions
partially documented; missing or redundant conditions also appear frequently.
Therefore, it is extremely helpful to provide a way for the users to correct/complete the
pre-conditions/post-conditions in order to improve the integrity of the use case
document.

A.2.2.
Dynamic Analysis of Software Requirements Specification

Table 64 – Consistency and Completeness in CMPN (Lee et al.,1998)
Property Description

Deadlock If there exists a set of transitions that are never enabled. This type of flaw is analogous to unreachable
code in programs. Since use cases are expected to reflect genuine needs, it is reasonable to require
that CMPNs do not contain transitions that are never enabled (inconsistency).

Non-determinism If the reachability analysis reveals the presence of non-deterministic execution paths, the CMPN may
be incomplete because users may have forgotten to fully specify the constraints associated with the
use cases. It must be emphasized that nondeterministic execution paths may have been introduced on
purpose and that the final decision can be made only by the domain experts.

Missing toggle place
reference

State variables are modeled as toggle places, i.e, a toggle place consists of a pair of places where a
place is the negation of the other. When one of these places is missing, the CMPNs are surely
incomplete.

Toggle place values
never modified

State variables are never changed during system operation. CMPNs must contain transitions that are
capable of removing or depositing a token from or to the toggle places, respectively. Otherwise, the
CMPNs are surely incomplete.

Slices with no shared
transitions

Slices are likely to contain shared transitions which serve as synchronization points among
concurrently executing CMPN slices. The presence of a slice that never interacts with the rest of the
system is likely, although not conclusively, to be incorrect.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

231

Table 65 – Faults Detected by Time Petri-Nets (Lee et al., 2001)
Fault Description
Missing information The name of places or transitions in Petri-Net are not specified;

Place, that is not an initial place does not have input arcs;
Place, that is not an final place does not have output arcs;

Wrong information Timing constraints inconsistently - intra-scenario: contradictory timing constraints in a scenario;
Timing constraints inconsistently - inter-scenario: specifying two different values on the same
interval of two events may cause this inconsistency;
Non-determinism: when there is the same event sent from the same object with the same timing
constraints but with different objects to receive this event;
Incorrectly specified timing constraints.

Table 66 – Use Case Defect Classification (Denger et al., 2005)
Defect Class Description Example
Incorrectness The UC does not match the expected or intended

behavior; that is, the information presents in the UC is
wrong and does not represent the user requirements.

The flow of a UC does not
represent the flow of activities
expected by the user.

Incompleteness The UC does not contain all necessary scenarios.
The UC set does not contain all necessary Use Cases.
Information that is required for subsequent activities is
not present.

An important exception is not
specified, a certain actor is not
considered.

Inconsistency A piece of information of a single Use Case or of
different Use Cases is described in at least two
different, incompatible ways so that there is a
contradiction between them.

The quality constraints of a Use
Case contradict the event flow.
One user action in two different
Use Cases requires contradictory
system behavior.

Ambiguity Elements of the Use Case can be interpreted in two or
more ways. Thus, it is not clear which of the
interpretations are true.

A condition containing “and”
and “or” does not explicitly state
the required bracketing.

Table 67 – Properties of UC-LTSs (Sinnig et al., 2009)
Property Description
Well-formedness All use case steps and extensions IDs be unique.

For every step or extension reference, there exists a corresponding use case step or use case
extension within the same use case, respectively.
There are not circular inclusions in include relationships.
The last element of every use case step sequence be either Goto, Success or Failure.

Livelock Phenomenon, where an application performs an infinite sequence of internal actions.
Erroneous use case specifications may contain loops of internal system steps.

Refinement Verify whether a refining use case model has the same traces and exposes the same non-
determinism (existing nondeterministic transitions are preserved).

Table 68 - Properties of Timed and Controlled Petri-Nets (Zhao and Duan, 2009)
Property Description
Completeness All places and transitions are specified by particular names;

Not isolated subnet exists in the TCPN model of each use case;
Consistency The TCPN model itself is consistency, i.e. the TCPN is live;

TCPN models of related use cases are consistency, i.e. TCPN model of the use case U is
consistent with that of U’s include use case; TCPN model of the use case U is consistent with
that of U’s base use case.

Correctness The reachability graph of TCPN model is correct;
The TCPN models is bounded;
The time delay of the transition of TCPN models is valid.

Table 69 – Properties of Reactive Petri-Nets (Somé, 2010)
Property Description
Balancedness The absence of connection between parallel place/transitions.
1-safety If for all reachable marking (state) M, each place in Petri-Net contains at most one

token. These two properties are sufficient conditions for the generation of structure-
preserving State- Charts from Petri-Nets

Lack of non-determinism The Petri-Nets obtained from use cases are devoid of non-determinism.

DBD
PUC-Rio - Certificação Digital Nº 1021791/CA

